• 제목/요약/키워드: Power output control

검색결과 2,771건 처리시간 0.033초

태양전지어레이 순시 출력변동에 의한 외란의 억제기능을 갖는 계통연계형 태양광발전 시스템 (Grid Connected PV System with a Function to Suppress Disturbances caused by Solar-cell Array Instantaneous Output Power Fluctuation)

  • 김홍성;최규하;유권종
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.63-69
    • /
    • 1999
  • The conventional grid connected PV(Photovoltaic) system has a unstable output pattern due to its dependence on the weather condition, although solar-cell array averagely has a regular output characteristics to have a peak output nearly at noon. Therefore assuming the high density grid connection in the future, this unstable output pattern can be one of the main reasons to generate power disturbance such as voltage variation, frequency variation and harmonic voltage generation in low voltage distribution line. However general grid connected solar-cell system do not have functions to cope with these disturbances. Therefore this study proposed a advanced type grid connected PV system with functions to suppress output power fluctuation due to solar-cell array output variation and showed the levelling effect of fluctuation due to instantaneous array output variation.

  • PDF

Output Power Control of Wind Generation System by Machine Loss Minimization

  • Abo-Khalil Ahmed;Lee Dong-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.51-54
    • /
    • 2005
  • Generator efficiency optimization is important for economic saving and environmental pollution reduction. In general, the machine loss can be reduced by the decreasing the flux level, resulting in the significant reduction of the core loss. This paper proposesan model-based controller is used to decrement the excitation current component on the basis of measured stator current and machine parameters and the q-axis current component controls the generator torque, by which the speed of the induction generator iscontrolled according to the variation of the wind speed in order to produce the maximum output power. The generator reference speed is adjusted according to the optimum tip-speed ratio. The generated power flows into the utility grid through the back-to-back PWM converter. The grid-side converter controls the dc link voltage and the line-side power factor by the q-axis and the d-axis current control, respectively. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

일사량 변화에 대한 최대전력점 추종 제어의 비교 연구 (Comparison Study of Maximum Power Point Tracking Control with Changing of Radiation)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1075-1082
    • /
    • 2010
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

가상자속관측기를 이용한 3상 AC/DC PWM PFC 컨버터의 입력전압 센서리스 제어 개선 (Improved Input Voltage Sensorless Control of Three-Phase AC/DC PWM PFC Converter using Virtual Flux Observer)

  • 김영삼;소상호
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.566-574
    • /
    • 2013
  • In this paper, direct power control system for three-phase PFC AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the reduced-order virtual flux observer using the actual currents and the command control voltage. Moreover, source voltage sensors are replaced by a estimated flux. DC output voltage has been compensated by DC output ripple voltage estimation algorithm. The active and reactive powers estimation are performed based on the estimated flux and Phase angle. The proposed algorithm is verified through simulation and experiment.

MPPT 제어기법에 따른 PV 시스템의 특성 비교 (Comparative characteristics of the PV system according to the MPPT control Method)

  • 서태영;고재섭;강성민;김유탁;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.956-957
    • /
    • 2015
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

  • PDF

전동차용 전원장치의 출력전압 제어 안정성 향상 (Stability Improvement of Output Voltage Control on the Power Supply for Railways)

  • 서광덕
    • 조명전기설비학회논문지
    • /
    • 제13권4호
    • /
    • pp.134-141
    • /
    • 1999
  • 본 논문은 전동차량용 전원장치의 출력전압 제어 안정성을 향상시키기 위한 연구이다. 입력전압 변동 및 부하 변동 등 과도상태시 출력 정전압 제어를 수행할 경우, L-C 필터부에서 공진이 발생함으로써 출력전압이 흔들리고 시스템이 불안해진다. 본 논문에서, 출력전압제어의 안정성을 확보하기 위해 주필터부에 공진을 억제하는 댐핑회로를 새롭게 제안하고, 이에 적합한 제어방법을 소개한다. 제안한 댐핑회로는 R-L로서 소형이고 간단히 구성된다. 제어기에는 과도상태분의 궤환제어와 대역저지필터를 적용한다. 또한 전력회로는 3레벨 PWM방식을 적용하였다. 이로서 과도상태에서 출력전압의 흔들림없이 변동폭을 10[%]이하로 제어할 수 있었으며, 정상상태의 출력 전압 왜형율도 3[%]이하로 감소시켰다.

  • PDF

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.

비선형 제어기법을 이용한 PWM 정류기의 입출력 제어 (Input and Output Control of PWM Rectifiers using a Nonlinear Control Technique)

  • 이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권12호
    • /
    • pp.701-708
    • /
    • 1999
  • The PWM rectifiers are capable of supplying sinusoidal current control and unity power factor control on the input side and dc output voltage control on the output side. By applying nonlinear control to the PWM rectifiers, the responses of input current and output voltage can be improved and due to fast voltage control the output electrolytic capacitor can be reduced remarkably. In addition, it is checked whether or not the current capacity of the reduced-size capacitor allows the ripple current of the rectifier. The nonlinear control technique gives a good performance for supply voltage disturbances. The validity of the proposed scheme has been verified by the experiment using DSP.

  • PDF

6시그마 기법을 적용한 원자력 터빈 시뮬레이터의 발전기 출력 연산오차 저감 (The Reduction of Generator Output Calculation by Using 6σ Method on Steam Turbine Simulator in a Nuclear Power Plant)

  • 최인규;김종안;박두용;우주희;신만수
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.1017-1022
    • /
    • 2011
  • This paper describes the improvement of the calculation by using $6{\sigma}$ method on steam turbine simulator in a nuclear power plant. The simulator is essential to not only verification and validation of control logic but also making sure of control constants in upgrading the long time used control system into the new one. And the dynamic model is a key point in that simulator. The model used during the retrofit period of the turbine controller in Kori Nuclear Power Plant makes difference in calculating generator output and control valve positions. That is because such operating data as the main steam pressure, the main steam temperature and control valve positions of Yongkwang #3 are different from those of Kori #4. Therefore, the model parameters must be tuned by using actual operating data for the high fidelity of simulator in calculating the dynamic characteristic of the model. This paper describes that the $6{\sigma}$ method is used in improvement of precision of generator output calculation in the steam turbine model of the simulator.

발전소 터빈제어 밸브시험 계통 모델 개발 (Development of Process Model for Turbine Control Valve Test in a Power Plant)

  • 우주희;최인규;박두용;김종안
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.830-837
    • /
    • 2011
  • A turbine control system which has been operated for years in a nuclear power plant was retrofitted with a newly developed digital control system. After completion of the retrofit, turbine valve tests were performed to ensure the integrity of each valve's control function. The sequence of each valve test is composed of a closing process and a reopening process. To minimize megawatt variation which normally occurs during the test sequence, we employed a kind of compensator algorithm in the new digital control system which also have been used in the old system. There were difficulties finding optimal parameter settings for our new compensator algorithm because the power plant didn't allow us to perform necessary tuning procedures while the turbine is on load operation. Therefore an alternative measure for the compensator tuning which is independent of the turbine actual operation had to be implemented. So, a process model for the test was required to overcome this situation. We analyzed the operation data of the test and implemented the process model by use of input and output variable relations. Also we verified the process model by use of another condition's operating data. The result shows that the output of model is similar to the actual operation data.