• Title/Summary/Keyword: Power output control

Search Result 2,771, Processing Time 0.024 seconds

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.

Control of a Single Phase Unified Power Quality Conditioner-Distributed Generation Based Input Output feedback Linearization

  • Mokhtarpour, A.;Shayanfar, H.A.;Bathaee, M.;Banaei, M.R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1352-1364
    • /
    • 2013
  • This paper describes a novel structure for single phase Unified Power Quality Conditioner-Distributed Generation (UPQC-DG) with direct grid connected DC-AC converter for low DC output DG systems which can be used not only for compensation of power quality problems but also for supplying of load power partly. This converter has been composed of one full-bridge inverter, one three winding high frequency transformer with galvanic isolation and two cycloconverters. Proper control based on Input Output feedback Linearization is used to tracking the reference signals. The simulation and experimental results are presented to confirm the validity of the proposed approach.

Output power maximizing in ultrasonic transducer driven at 1MHz utilizing auto-tune MOS-FET RF inverter

  • Mizutani, Yoko;Suzuki, Taiju;Ikeda Hiroaki;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.87-90
    • /
    • 1995
  • When the ultrasonic transducer operating at l MHz for use in cleaning semiconductor wafers or other industsrial materials is driven from the MOS-FET DC-to RF inverter, the output power severely depends on the frequency of operation since the quality factor of the transducer is high. In order to tune to the eresonating frequency of the ultrasonic transducer, the drive signal frequency of the MOS-FET power inverter is automatically scananed until the frequency is set at the resonating frequency of the ultrasonic transducer is maximized. The control circuit consists of an output power sensing circuit, a PLL controller, a frequency standard, and other peripheral circuits. The operation was satisfactory when the transducer having an output of 600 W at 1 MHz was used.

  • PDF

Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power

  • Thongprasri, Pairote;Kittiratsatcha, Supat
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1527-1536
    • /
    • 2014
  • This paper investigates the optimal values of turn-on and turn-off angles, and ratio of flux linkage at turn-off angle and peak phase current positions of optimal control for accomplishing maximum output power in an 8/6 Switched Reluctance Generator (8/6 SRG). Phase current waveform is analyzed to determine optimal excitation angles (optimal turn-on and turn-off angles) of the SRG for maximum output power which is applied from a nonlinear magnetization curve in terms of control variables (dc bus voltage, shaft speed, and excitation angles). The optimal excitation angles in single pulse mode of operation are proposed via the analytical model. Simulated and experimental results have verified the accuracy of the analytical model.

A Single-Phase Embedded Z-Source DC-AC Inverter by Asymmetric Voltage Control (비대칭 전압 제어를 이용한 단상 임베디드 Z-소스 DC-AC 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • In case of the conventional DC-AC inverter using two DC-DC converters with unipolar output capacitor voltages, for generating the AC output voltage, the output capacitor voltages of its each DC-DC converter must be higher than the DC input voltage. To solve this problem, this paper proposes a single-phase DC-AC inverter using two embedded Z-source converters with bipolar output capacitor voltages. The proposed inverter is composed of two embedded Z-source converters with common DC source and output AC load. The AC output voltage is obtained by the difference of the output capacitor voltages of each converter. Though the output capacitor voltage of converter is relatively low compared to the conventional method, it can be obtained the same AC output voltage. Moreover, by controlling asymmetrically the output capacitor voltage, the AC output voltage of the proposed system is higher than the DC input voltage. To verify the validity of the proposed system, a DSP(TMS320F28335) based single-phase embedded Z-source DC-AC inverter was made and the PSIM simulation was performed under the condition of the DC source 38V. As controlled symmetrically and asymmetrically the output capacitor voltages of each converter, the proposed inverter could produce the AC output voltage with sinusoidal waveform. Particularly, in case of asymmetric control, a higher AC output voltage was obtained. Finally, the efficiency of the proposed system was measured as 95% and 97% respectively in case of symmetric and asymmetric control.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

A Novel Control Strategy for Input-Parallel-Output-Series Inverter System

  • Song, Chun-Wei;Zhao, Rong-Xiang;Lin, Wang-Qing;Zeng, Zheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • This paper presents a topology structure and control method for an input-parallel-output-series(IPOS) inverter system which is suitable for high input current, high output voltage, and high power applications. In order to ensure the normal operation of the IPOS inverter system, the control method should achieve input current sharing(ICS) and output voltage sharing(OVS) among constituent modules. Through the analysis in this paper, ICS is automatically achieved as long as OVS is controlled. The IPOS inverter system is controlled by a three-loop control system which is composed of an outer common-output voltage loop, inner current loops and voltage sharing loops. Simulation results show that this control strategy can achieve low total harmonic distortion(THD) in the system output voltage, fast dynamic response, and good output voltage sharing performance.

Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor (독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어)

  • Jung, Kyo-Sun;Lim, Kyung-Bae;Kim, Dong-Hwan;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.