• Title/Summary/Keyword: Power of a circle

Search Result 106, Processing Time 0.032 seconds

Eigenvalue Analysis of Power Systems with Non-Continuous Operating Elements by the RCF Method : Modeling of the State Transition Equations (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 고유치 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.67-72
    • /
    • 2005
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this paper, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition equations. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

Estimation of the Economic Value of Pumped Storage Power Generation in Korea (양수발전의 비시장 가치 추정)

  • Won, DooHwan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.263-275
    • /
    • 2022
  • Purpose - This study estimated the non-market value of pumped storage power generation using the contingent valuation method(CVM). Design/methodology/approach - CVM, a non-market value estimation method, was used. The perception of pumped storage power generation and the willingness to pay(WTP) for pumped storage power generation were investigated among 612 randomly selected households. Findings - It was analyzed that the average value per household was 7309.99 won/month, and the sources of these benefits were 1819.37 won due to the improvement of power generation efficiency, 1320.48 won due to the improvement of power system reliability, 2359.24 won due to the stabilization of electricity rates, 2110.89 won due to water resource management It was assumed that a circle occurred. If the average monthly benefit per household is expanded to cover countries across the country, it is estimated that the annual value to our society from pumped storage power generation will be KRW 1.796.6 trillion. Research implications or Originality - It is necessary to consider the operation of pumped-water power generation by reflecting the value of pumped-up power generation that is not evaluated in the market. Since Korea's electricity market is isolated in a state where it is impossible to connect with other countries, it may be vulnerable to a stable electricity operation system. Therefore, there is a need for a facility that can stably secure reserve power and produce power quickly when necessary. If pumped-water power generation is actively used for power operation, a more stable power system can be secured.

Multivariable Controller Design for Nuclear Power Plant Using INA Method (INA 법을 이용한 원자력 발전소의 다변수 제어기 설계)

  • Dong-Hwa Kim;Suk-Kyo Hong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1086-1097
    • /
    • 1990
  • The design of multivariable control systems using the Inverse Nyquist Array method is described in this paper. The INA is a simple design technique, which permits a designer to achieve his objectives for a controller specification in a step-by-step fashion using Gershgorin band and Ostrowski circle. The application to a multivariable system of CANDU nuclear power plant with 5 inputs, 8 outputs, and 24 state variables is reviewed and the simulation shows satisfactory results.

Parameter Measurement and Dynamic Performance Estimation of Synchronous Reluctance Motor Considering Iron Loss (철손을 고려한 자기저항 동기전동기의 정수 측정 및 동특성 예측)

  • Lee, J.S.;Hong, J.P.;Hahn, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.58-60
    • /
    • 1999
  • This paper presents dynamic performance prediction using Matlab / simulink after parameter estimation of synchronous reluctance motor considering iron loss. Test motor is 3 phase SynRM with the segmental rotor, rating power is 0.175KW. Experiment equipment is consists of testing motor, dynamometer, vector invertor dynamocontroller, and power analyser. The stator iron loss and rotor iron loss are modelled by additional windings on three-phase winding axis. These windings are transformed into d-q axis, and are represented as equivalent eddy current windings. P-Q circle diagram method and single phase standstill method are used to measure motor parameters considering iron loss.

  • PDF

Free Vibration Analysis of Curved Beams Regarded as Discrete System Using Finite Element-Transfer Stiffness Coefficient Method (유한요소-전달강성계수법에 의한 이산계 곡선보의 자유진동해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • A curved beam is one of the basic and important structural elements in structural design. In this paper, the authors formulated the computational algorithm for analyzing the free vibration of curved beams using the finite element-transfer stiffness coefficient method. The concept of the finite element-transfer stiffness coefficient method is the combination of the modeling technique of the finite element method and the transfer technique of the transfer stiffness coefficient method. And, we confirm the effectiveness the finite element-transfer stiffness coefficient method from the free vibration analysis of two numerical models which are a semicircle beam and a quarter circle beam.

Small signal stability analysis of power systems with non-continuous operating elements by using RCF method : Modeling of the state transition equation (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 미소신호 안정도 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.342-344
    • /
    • 2004
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this research, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements'. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition matrix. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

  • PDF

A Study on Maneuvering Control Algorithm Based on All-wheel Independent Driving and Steering Control for Special Purpose 6WD/6WS Vehicles (전차륜 독립휠 구동 및 조향 제어 기반 특수목적용 6WD/6WS 차량의 주행제어 알고리즘 연구)

  • Lee, Daeok;Yeo, Seungtai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.240-249
    • /
    • 2013
  • This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving, steering, vehicle stability, and fault tolerant control. The maneuvering controller applies sliding and optimal control theories considering optimal torque distribution and friction circle related to the vertical tire force. The fault tolerant control algorithm is applied to obtain the similar maneuverability to that of the non-faulty vehicle. The simulations using the Matlab/Simulink dynamics model and experiments using HIL simulator mounting the real controllers with the designed control algorithms prove the improved performances in terms of vehicle stability and maneuverability.

Proportional Gas Flow Control Valve Using Piezo Actuator (압전액추에이터를 이용한 비례 가스유량제어밸브)

  • Yun S.N.;Kim C.Y.;Ham Y.B.;Lee K.W.;Kang J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.3
    • /
    • pp.6-11
    • /
    • 2005
  • A household gas valve is used for flow control of LPG(Liquefied Petroleum Gas) or LNG(Liquefied Natural Gas) of which pressure is about $200mmH_2O(\fallingdotseq\;0.0196[bar])$. Currently, two kinds of valves such as rotary type and button type are widely used in many applications. But, these valves have some problems that they are not controllable and reliable. Piezo actuation combined with modem microelectronics provides a reliable, quiet, low energy, infinitely adjustable gas valve. In this paper, gas valve using piezo actuator which are bimorph and a circle type was studied. Also, Prototype for gas valve was manufactured and characteristics of the prototype gas valve were analyzed.

  • PDF

Electric power system effect investigation of large size digital signal accident thought in digital age (디지털시대의 대형사고의 전기적 영향 고찰)

  • Kang, Tae-Keun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • The latest equipment automatic Intelligence of digital base done large size equipment appear in succession. That run by voltage electric current(mA, mV, ${\mu}A,\;{\mu}V$) that outline is microscopic of action of accuracy large size equipment of this digital base is bulk. Have received influence that is great in river electric field by installment that use computer. Most of domestic working voltage from service entrance extra-high voltage and working voltage of commercial frequency 60Hz working voltage 220V that use our country outside 1 country in interior of 22.900V for semiconductor use computer use digital installment of appliance as well as various smalls of digital base, middle, large size that safety is these fine voltage electric current that is not enough direct admonition hundred vast damage give can. Also, already act in surge circle and impulse transient phenomena such as several thousands, myriads, strong bit error more than billions time to digital fine electronic circuit by mistake use of using electric facility system of system electric power.

  • PDF

Development of the injection mold structure for internal gears (내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Y.S.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.78-82
    • /
    • 2008
  • Plastic gears are more and more widely used in many industrial machine elements. Plastic gear has higher properties such as light weight, wear resistance, and vibration absorbing ability than metallic gears. But, in case of using an inaccurate plastic gear, its tooth breakage happen and fatigue life is shortened due to increase of applying load and temperature rising on the tooth flank. Inaccuracy of plastic gears such as pitch circle roundness and tooth profile generates vibration and noise. In this study, an internal plastic gears which is molded by a new injection mold structure are developed. The new mold structure is called the HR3P(hot runner type 3plate mold) that has an improved runner system in order to have good filling balance. As a result from this study, an internal gear with very accurate roundness was developed by using design of experiment.

  • PDF