• 제목/요약/키워드: Power modulation

검색결과 2,099건 처리시간 0.02초

최적 변조 제어기를 이용한 교류-직류계통의 안정화에 관한 연구 (A Study for the Stabilization of A.C.-D.C. Power Systems Using Optimal Modulation Controllers)

  • 왕용필;허동렬;정형환;김해재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.123-126
    • /
    • 1996
  • In this paper, optimal modulation controller is designed to improve the stability of A.C. and A.C.-D.C. power system, and optimal theory is applied to select optimal modulation controller input signal Optimal modulation controller for speed governor and exciter controller system is constructed in A.C. power system, while the controller is constructed to the both control systems like AC. power system, considering ACR-AVR, APR-$A{\gamma}R$ as the control method of direct current system. It is considered that the stability of A.C. power system only and A.C.-D.C. power system against load fluctuations and disturbances under case of optimal modulation control.

  • PDF

An Efficiency-Optimized Modulation Strategy for Dual-Active-Bridge DC-DC Converters Using Dual-Pulse-Width-Modulation in the Low Power Region

  • Byen, Byeng-Joo;Ban, Chung-Hwan;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1413-1421
    • /
    • 2017
  • In order to control the output voltage in a dual active bridge converter, this paper establishes a theoretical inductor current equation for a dual-pulse-width-modulation scheme that ensures low switching loss. It also proposes a modulation strategy that minimizes conduction loss. When compared to the conventional single-pulse-width-modulation strategy, the proposed approach can reduce the inductor current RMS and improve efficiency in the low power region, as verified through simulation and experimental results.

Power Tracking Control of Domestic Induction Heating System using Pulse Density Modulation Scheme with the Fuzzy Logic Controller

  • Nagarajan, Booma;Sathi, Rama Reddy;Vishnuram, Pradeep
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1978-1987
    • /
    • 2014
  • Power requirement to the induction heating system varies during the heating process. A closed loop control is required to have a smooth control over the power. In this work, a constant frequency pulse density modulation based power tracking control scheme for domestic induction heating system is developed using the Fuzzy Logic Controller. In the conventional power modulation schemes, the switching losses increase with the change in the load. The proposed pulse density modulation scheme maintains minimum switching losses for the entire load range. This scheme is implemented for the class-D series resonant inverter system. Fuzzy logic controller based power tracking control scheme is developed for domestic induction heating power supply for various power settings. The open loop and closed loop simulation studies are done using the MATLAB/Simulink simulation tool. The control logic is implemented in hardware using the PIC16F877A microcontroller. Fuzzy controller tracks the set power by changing the pulse density of the gate pulses applied to the inverter. The results obtained are used to know the effectiveness of the fuzzy logic controller to achieve the set power.

ILS 로컬라이저 시스템 분석 및 전력증폭기 설계 (System Analysis and Power Amplifier Design for ILS Localizer)

  • 김수경;구경헌
    • 한국항행학회논문지
    • /
    • 제28권1호
    • /
    • pp.116-122
    • /
    • 2024
  • 본 논문에서는 ILS (instrument landing system) 로컬라이저 전력증폭기의 변조도, 출력, 그리고 위상 변화량 규격의 요구성능을 도출하기 위하여, 시스템의 주요 성능 중에서 course structure와 course width를 연구하였다. Course structure의 편차 규격(± 5 uA)을 만족하기 위한 CSB (carrier with sideband) 증폭기의 변조신호 DDM (difference in depth of modulation) 편차 규격을 ± 1 uA(0.001 DDM)로 규격화하였다. CSB 30 W 전력증폭기를 설계하였고, 변조도 보상회로를 통하여 동작운용 출력범위(45 dBm ~ 35 dBm)에서 SDM (sum in depth of modulation)은 40% ± 0.1%, DDM은 ± 0.0005 DDM의 특성을 얻었다. 그리고 course width와 displacement sensitivity 규격에 대하여 시뮬레이션으로 분석하고, 가장 엄격한 규격인 운용개시 점검시에 적용되는 ± 0.1 ° 변화량을 적용하여, SBO (suppressed with sideband only) 증폭기의 출력변동은 ± 2 mW, 위상은 ± 3 ° 로 규격화하고 특성을 만족하였다. 출력과 온도에 따른 보상회로를 적용하여, 안정적인 변조지수, 출력, 그리고 위상 특성을 얻었다.

Optimized Hybrid Modulation Strategy for AC Bypass Transformerless Single-Phase Photovoltaic Inverters

  • Deng, Shuhao;Sun, Yao;Yang, Jian;Zhu, Qi;Su, Mei
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2129-2138
    • /
    • 2016
  • The full-bridge inverter, widely used for single-phase photovoltaic grid-connected applications, presents a leakage current issue. Therefore, an AC bypass branch is introduced to overcome this challenge. Nevertheless, existing modulation strategies entail drawbacks that should be addressed. One is the zero-crossing distortion (ZCD) of the AC current caused by neglecting the AC filter inductor voltage. Another is that the system cannot deliver reactive power because the AC bypass branch switches at the power frequency. To address these problems, this work proposes an optimized hybrid modulation strategy. To reduce ZCD, the phase angle of the inverter output voltage reference is shifted, thereby compensating for the neglected leading angle. To generate the reactive power, the interval of the negative power output is calculated using the power factor. In addition, the freewheeling switch is kept on when power is flowing into the grid and commutates at a high frequency when power is fed back to the DC side. In this manner, the dead-time insertion in the high-frequency switching area is minimized. Finally, the performances of the proposed modulation strategy and traditional strategies are compared on a universal prototype inverter. Experimental results validate the theoretical analysis.

전기저항용접의 파형제어에 관한 기초연구 (Preliminery study of waveform control in ERW process)

  • 조민현;김동철;강문진;은성수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.32-32
    • /
    • 2009
  • Electric Resistance Welding (ERW) process is the most efficient process to manufacture the linepipe. To develop the high performance ERW linepipe using the high strength and the high alloy steels, the modulation of input power waveform such as sinusoidal waveform is introduced because the conventional ERW technology is not sufficient enough to produce the high quality linepipe due to its strength and high alloy contents (high Ceq). In this article, the material used for the experiment was API X60 with 8.2mm thickness, and ERW simulator at POSCO was used to develop a waveform control system for the power modulation. The frequency of power modulation was varied from 50Hz to 150Hz with the fixed amplitude of ${\pm}2%$ power. The non-modulated power input and the modulated power input cases are conducted to demonstrate the variation of the narrow gap length and the arcing frequency due to power modulation. From results of the non-modulated power input case, the excessive power causes the longer narrow gap length and the low arcing frequency due to the large heat input and the strong electro magnetic force that increase the weld defect. On the contrary, the small narrow gap length and the high arcing frequency reduce the weld defect. After modulating the power input with 50Hz and 100Hz at the fixed power, the arcing frequency increases, but the narrow gap length does not change much. The high arcing frequency prevents the formation of weld defect because the sweeping frequently cleans the oxides on the narrow gap edges. As a result, the manufacturing window can be expanded by the power modulation that provides the stable ERW process for the quality improvement of the linepipe made from the high strength/high alloy steels.

  • PDF

A Novel Pulse-Width and Amplitude Modulation (PWAM) Control Strategy for Power Converters

  • Ghoreishy, Hoda;Varjani, Ali Yazdian;Farhangi, Shahrokh;Mohamadian, Mustafa
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.374-381
    • /
    • 2010
  • Typical power electronic converters employ only pulse width modulation (PWM) to generate specific switching patterns. In this paper, a novel control strategy combining both pulse-width and amplitude modulation strategies (PWAM) has been proposed for power converters. The Pulse Amplitude Modulation (PAM), used in communication systems, has been applied to power electronic converters. This increases the degrees of freedom in eliminating or mitigating harmonics when compared to the conventional PWM strategies. The role of PAM in the novel PWAM strategy is based on the control of the converter's dc sources values. Software implementation of the conventional PWM and the PWAM control strategies has been applied to a five-level inverter for mitigating selective harmonics. Results show the superiority of the proposed strategy from the THD point of view along with a reduction in the inverter power dissipation.

최적 변조제어기를 이용한 전력시스템의 부하주파수 제어에 관한 연구 (A Study on the Load Frequency Control of Power System Using an Optimal Modulation Controller)

  • 정형환;허동렬;정문규;주석민;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.299-306
    • /
    • 2002
  • The load frequency control(LFC) of power system is one of important subjects in view of system operation and control. That is, even though the rapid load disturbances are applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow ones of each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation are given, the unstable phenomena of power systems can be often brought out because of the large frequency deviation and the unsuppressible power line one. So, an optimal modulation controller for UC of multi-area power system is designed by a recursive algorithm that determines the state weighting matrix Q of a linear quadratic performance criterion. The optimal modulation controller is based on optimal control and can obtain the exact dynamic response of the UC of multi-area power system in the time domain. The performances of the resultant optimal modulation control, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the UC of multi-area power system in the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbance of stepwise load changes, the superiorities of the proposed optimal modulation controller in robustness and stability were proved.

OFDM 기반 저전력 통신 시스템 설계와 성능 평가 (Design and Performance Evaluation of OFDM-Based Low Power Communication System)

  • 최재훈;유흥균
    • 한국전자파학회논문지
    • /
    • 제22권10호
    • /
    • pp.951-959
    • /
    • 2011
  • 저전력 변조 방식은 근거리 통신 시스템에서 전력 효율을 높이기 위하여 필요한 요소이다. 본 논문은 저전력 변조를 위해 제안된 PSSK(Phase Silence Shift Keying), PSPM(Phase Shift Position Modulation), QAPM(Quadrature Amplitude Position Modulation) 방식들을 주파수 측에서의 mapping을 통하여 OFDM 전송을 하고 그 성능을 분석한다. PSSK, PSPM과 QAPM 변조 방식은 기존의 PSK, QAM 변조 방식에 비하여 대역 효율은 떨어지지만, 전송효율을 높인 변조 방식으로 PPM 방식을 이용하여 신호의 주기를 나누고, PSK 혹은 QAM 심볼을 배치한다. 이렇게 배치함으로써 심볼 주기 이외의 구간은 0을 배치할 수 있게 되고 그에 따라 전력 효율을 높이는 방식이다. PPM 방식을 이용한 변조 방식은 PSK보다 높은 전력 효율과 FSK보다 높은 대역 효율을 얻을 수 있으며, 전체적인 성능은 FSK와 PSK의 사이에 위치하게 된다. OFDM 전송 방식은 기존의 단일 반송파 전송 방식보다 대역 효율을 높일 수 있다. 이 논문에서는 PSSK와 PSPM, QAPM과 같은 저전력 변조 방식을 OFDM 방식에 적용하기 위한 주파수축에서의 부반송파 mapping 방식을 제안한다. 또한, 제안된 mapping을 통하여 전송하였을 때의 BER 성능과 단일 반송파 전송을 통한 BER 성능을 비교하며, 기존의 방식과의 PAPR 성능을 비교한다.

A 12.5-Gb/s Optical Transmitter Using an Auto-power and -modulation Control

  • Oh, Won-Seok;Park, Kang-Yeob;Im, Young-Min;Kim, Hwe-Kyung
    • Journal of the Optical Society of Korea
    • /
    • 제13권4호
    • /
    • pp.434-438
    • /
    • 2009
  • In this paper, a 12.5-Gb/s optical transmitter is implemented using 0.13-${\mu}m$ CMOS technology. The optical transmitter that we constructed compensates temperature effects of VCSEL (Vertical cavity surface emitting laser) using auto-power control (APC) and auto-modulation control (AMC). An external monitoring photodiode (MPD) detects optical power and modulation. The proposed APC and AMC demonstrate 5$\sim$20-mA of bias-current control and 5$\sim$20-mA of modulation-current control, respectively. To enhance the bandwidth of the optical transmitter, an active feedback amplifier with negative capacitance compensation is exploited. The whole chip consumes only 140.4-mW of DC power at a single 1.8-V supply under the maximum modulation and bias currents, and occupies the area of 1280-${\mu}m$ by 330-${\mu}m$ excluding bonding pads.