• Title/Summary/Keyword: Power loss reduction

Search Result 441, Processing Time 0.028 seconds

Analysis of Permanent Magnet Eddy Current Loss by Permanent Magnet Attaching Method of Magnetic Gears (마그네틱 기어의 영구자석 부착방법에 따른 영구자석 와전류손실 분석)

  • Park, Eui-Jong;Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.911-915
    • /
    • 2017
  • Recently, there has been an increasing interest in the non-contact power transmission method of magnetic gears. Since there is no mechanical contact, noise caused by friction can be reduced, and even if a sudden large force is applied, the impact of the gear is close to zero. Further, since the power is transmitted by the magnetic flux, it has high reliability. However, there is a problem that a loss due to a magnetic field due to use of a magnetic flux. The loss caused by the magnetic field of the magnetic gear is a joule loss called eddy current loss. In addition, the eddy current loss in the magnetic gear largely occurs in the permanent magnet, but it is a fatal loss to the permanent magnet which is vulnerable to heat. Particularly, magnetic gears requiring high torque density use NdFeB series permanent magnets, and this permanent magnets have a characteristic in which the magnetic force decreases as temperature increases. Therefore, in this paper, the eddy current loss of the permanent magnet according to the permanent magnet attaching method is analyzed in order to reduce the eddy current loss of the permanent magnet. We have proposed a structure that can reduce the eddy current loss through the analysis and show the effect of reducing the loss of the proposed structure.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

Influence of end-joint methods on magnetization loss in striated helical conductors

  • Kim, Woo-Seok;Kim, Yungil;Choi, Kyeongdal;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2013
  • To reduce the magnetization loss of a coated conductor, the striation and the transposition have to be accomplished for magnetic decoupling. The loss reduction effect in incomplete as well as complete striated YBCO CCs was reported in previous research. At the case of the incomplete striated sample, the end region of the sample is non-striated. So, it is not jointed with each other. In power applications, the joint is needed because current leads must be connected with HTS coils. In this research, the influence of end-joint methods with copper and superconducting joint on magnetization loss in striated YBCO CC and spiral winding samples are presented and compared with non-striated measured result.

A Tie-plate Shape Optimization of 24MVA Cast Resin Transformer for Reduction of Stray Loss (24MVA 몰드 변압기의 손실저감을 위한 Tie-Plate의 형상 최적설계 연구)

  • Kim, Yong-Bae;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.55-61
    • /
    • 2014
  • This paper presents a method to reduce the stray loss of core Tie-Plate of distribution power transformer. The method combines a 3-dimensional FEM with PSO(Particle Swarm Optimization) algorithm to determine the shape of the Tie-Plate that minimizes eddy current and flux-leakage losses. To verify the method a 24MVA distribution(cast-resin) transformer was simulated using one objective function and two design variables with some constraints. The final optimized Tie-Plate has nine($3{\times}3$) slots of 10mm width, 15mm thickness and 25mm distance. After four iterations, the Tie-Plate loss was reduced to about 21 % of the original.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Reducing Power Consumption of Wireless Capsule Endoscopy Utilizing Compressive Sensing Under Channel Constraint

  • Saputra, Oka Danil;Murti, Fahri Wisnu;Irfan, Mohammad;Putri, Nadea Nabilla;Shin, Soo Young
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.130-134
    • /
    • 2018
  • Wireless capsule endoscopy (WCE) is considered as recent technology for the detection cancer cells in the human digestive system. WCE sends the captured information from inside the body to a sensor on the skin surface through a wireless medium. In WCE, the design of low-power consumption devices is a challenging topic. In the Shannon-Nyquist sampling theorem, the number of samples should be at least twice the highest transmission frequency to reconstruct precise signals. The number of samples is proportional to the power consumption in wireless communication. This paper proposes compressive sensing as a method to reduce power consumption in WCE, by means of a trade-off between samples and reconstruction accuracy. The proposed scheme is validated under channel constraints, expressed as the realistic human body path loss. The results show that the proposed scheme achieves a significant reduction in WCE power consumption and achieves a faster computation time with low signal error reconstruction.

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction

  • Shen, Chih-Lung;Yang, Shih-Hsueh
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.309-318
    • /
    • 2015
  • This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.

Aging Analysis and Reconductoring of Overhead Conductors for Radial Distribution Systems Using Genetic Algorithm

  • Legha, Mahdi Mozaffari;Mohammadi, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2042-2048
    • /
    • 2014
  • In medium voltage electrical distribution networks, reforming the loss reduction is important, and in line with this, the issue of system engineering and use of proper equipment Expansion of distribution systems results in higher system losses and poor voltage regulation. Therefore, an efficient and effective distribution system has become more important. So, proper selection of conductors in the distribution system is crucial as it determines the current density and the resistance of the line. Evaluation of aging conductors for losses and costs imposed in addition to the careful planning of technical and economic networks can be identified in the network design. In this paper the use of imperialist competitive algorithm; genetic algorithm; is proposed to optimal branch conductor selection and reconstruction in radial distribution systems planning. The objective is to minimize the overall cost of annual energy losses and depreciation on the cost of conductors to improve productivity given the maximum current carrying capacity and acceptable voltage levels. Simulations are carried out on 69-bus radial distribution network using genetic algorithm approaches to show the accuracy as well as the efficiency of the proposed solution technique.

Compact Branch-line Power Divider Using Connected Coupled-line Structure

  • Yun, Tae-Soon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2018
  • In order to improve performance for the size of the BLPD, the CCL is used for the realization as the delay line. As realizing lower coupling coefficient and lower characteristic impedance, the CCL has good performance of the phase delay. The CCL is applied as the compact BLPD with optimized coupling factor and matched impedance because the lower coupling coefficient and lower characteristic impedance are increased the size and the loss, respectively. Designed BLPD using the CCL has the size of $0.13{\lambda}_g{\times}0.13{\lambda}_g$ and the size-reduction ratio of fabricated BLPD using the CCL has 58.5% ($21.08{\times}21.40mm^2$). Also, fabricated BLPD is measured the insertion loss of 3.16dB at the center frequency of 1.78GHz and the 20dB bandwidth is 9.58%. Differenced magnitude and phase between threw port and coupled port are measured 0.1dB and $89.9^{\circ}$, respectively. These performances are almost same compared with the conventional BLPD. Suggested application of the CCL can be used various devices and circuits for the size-reduction.