• 제목/요약/키워드: Power load

검색결과 7,464건 처리시간 0.034초

부하단락이 빈번히 발생하는 경우에 적합한 교류-직류 전력변환기 (A New Ac-to-Dc Power Converter for a Load with Frequent Short Circuits)

  • 노의철;김인동
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.384-390
    • /
    • 1999
  • This paper describes a new ac-to-dc power converter using a multilevel converter. A conventional multilevel ac-to-dc converter has large output dc filter capacitors. When a short circuit happens in a load, the stored energy in the capacitors should be discharged through the load with a high short circuit current. The high current may cause considerable damage to the capacitors and the load. The output dc capacitors of the proposed converter do not discharge even under load short circuit condition. In the case of a load short circuit, the capacitors become a floating state immediately and remain in the state. Then the stored capacitor energy is supplied to the load again as soon as the short circuit has been cleared. Therefore, the rising time of the load voltage can be significantly reduced. This feature satisfies the requirement of a power supply for a load with frequent short circuits. The proposed converter has the characteristics of a simplified structure, a reduced cost, weight, and volume compared with conventional power supplies with frequent output short circuits. Experimental results are presented to verify the usefulness of the proposed converter.

  • PDF

전력계통해석용 프로그램에 적용하기 위한 부하모델링 (A Load Modeling to Utilize Power System Analysis Software)

  • 지평식
    • 조명전기설비학회논문지
    • /
    • 제13권4호
    • /
    • pp.96-101
    • /
    • 1999
  • 전력계통에서 부하모델은 안정도 해석과 조류계산의 정도를 높이기 위하여 매우 중요하다. 전력계통의 모선은 전압/주파수 변화에 따라 소비형태가 다른 다양한 부하들로 구성되어 있다. 따라서 전압/주파수 변화에 따른 부하모델을 고려하지 않으면 안된다. 본 연구는 정도 높은 부하모델링을 위해 신경회로망을 사용하였다. 대표적인 주거용 부하를 선정하여 전압과 주파수를 변화시키면서 부하특성을 측정하였다. 실험에서 얻은 실적자료로 신경회로망을 이용한 개별부하모델을 구축하고, 개별부하모델과 부하구성비에 의한 집단부하 모델을 제시하였다. 또, 전력계통해석 프로그램에 적용하기 위한 수학적 모델로의 변환기법을 제시하였다.

  • PDF

부하 역률을 고려한 직접부하제어 실행시 계통의 민감도 분석 (Sensitivity Analysis of the Power System Considering the Load Power Factor While using Direct Load Control)

  • 추성호;이주원;채명석;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.235-236
    • /
    • 2008
  • Recently, the power load is growing larger and because of the environmental limitation of generation, the expansion of generation facilities are becoming more difficult. For that reason the importance of the demand-side resources come to be higher. One method of the demand-side resource, the DLC Program, has executed, and moreover, the loads which are available to be controlled are increasing. It should be considered of some kinds of power system components such as DLCs, because the fact that using the demand resources will be an important part of the power system. This paper considers the power factor of the load-bus which is shedded in the direct load control program. and then analyze the power system using flow sensitivity and voltage sensitivity. In this paper, we assumed two scenarios through the rank of the load power factor at each bus and to compare and evaluate each case, we used Power World for the simulation.

  • PDF

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

Design of an Asymmetrical Three-phase Inverter for Load Balancing and Power Factor Correction Based on Power Analysis

  • Mokhtari, M.;Golshannavaz, S.;Nazarpour, D.;Aminifar, F.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.293-301
    • /
    • 2011
  • This paper presents a novel theoretical method based on power analysis to obtain voltage reference values for an inverter-based compensator. This type of compensator, which is installed in parallel with the load, is usually referred to as the active filter. The proposed method is tailored to design the compensator in such a way that it can simultaneously balance the asymmetric load, as well as correct the power factor of the supply side. For clarity, a static compensator is first considered and a recursive algorithm is utilized to calculate the reactance values. The algorithm is then extended to calculate voltage reference values when the compensator is inverter based. It is evident that the compensator would be asymmetric since the load is unbalanced. The salient feature associated with the proposed method is that the circuit representation of system load is not required and that the load is recognized just by its active and reactive consumptions. Hence, the type and connection of load do not matter. The validity and performance of the new approach are analyzed via a numerical example, and the obtained results are thoroughly discussed.

Monte Carlo법에 의한 복합전력계통의 유효부하지속곡선 작성법 및 개발 및 신뢰도 해석 (Development of the ELDC and Reliability Analysis of Composite Power System by Monte Carlo Method)

  • 문승필;최재석;신흥교;이순영;송길영
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.508-516
    • /
    • 1999
  • This paper presents a method for constructing composite power system effective load duration curves(CMELDC) at load points by Monte Carlo method. The concept of effective load duration curves(ELDC) in power system planning is useful and important in both HLII. CMELDC can be obtained from convolution integral processing of the probability function of unsupplied power and the load duration curve at each load point. This concept is analogy to the ELEC in HLI. And, the reliability indices (LOLP, EDNS) for composite power system are evaluated using CMELDC. Differences in reliability levels between HLI and HLII come from considering with the uncertainty associated with the outages of the transmission system. It is expected that the CMELDC can be applied usefully to areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. in HLII, DC load flow and Monte Carlo method are used for this study. The characteristics and effectiveness of thes methodology are illustrated by a case study of the IEEE RTS.

  • PDF

대용량 MCFC 발전시스템을 이용한 비상부하 전력 공급 장치 설계 및 제어방법 (Design and Control Method for Critical Load Supply Equipment using MCFC Electricity Generation Systems)

  • 김동희;김종수;최규영;이병국;곽철훈
    • 전력전자학회논문지
    • /
    • 제16권1호
    • /
    • pp.20-29
    • /
    • 2011
  • 본 논문에서는 동특성이 느린 용융탄산염 연료전지 (Molten Carbonate Fuel Cell, MCFC) 스택을 사용하여 계통사고 시 추가적인 UPS (Uninterruptible Power Supply) 없이 비상부하 (Critical Load)로 전력 공급이 가능하고, 사고 발생 후에도 정격전력으로 발전 가능한 비상부하 추종형 백업 시스템을 제안한다. 제안된 MCFC 발전 시스템용 비상부하 추종형 백업 시스템은 3상 인버터로 구성된 PCS (Power Conditioning System) 출력단에 3상 PWM 컨버터를 연결한 구조이고, 비상부하 추종이 가능한 추가적인 제어 알고리즘을 가지는 Load Leveler를 제어한다. 제안된 비상부하 추종형 백업 시스템의 회로와 제어 알고리즘의 타당성을 5kW 기반의 컴퓨터 시뮬레이션을 통하여 검증한다.