• Title/Summary/Keyword: Power limit

Search Result 1,458, Processing Time 0.031 seconds

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6 호기용 공기정화기에 대한 내진검증)

  • Kim, Jin-Young;Rhee, Hui-Nam;Lee, Joon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1376-1383
    • /
    • 2002
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed are condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

Development of a RVIES Syetem for Reactor Vessel Integrity Evaluation (원자로용기 건전성평가를 위한 RVIES 시스템의 개발)

  • Lee, Taek-Jin;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won;Jeong, Myeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2083-2090
    • /
    • 2000
  • In order to manage nuclear power plants safely and cost effectively, it is necessary to develop integrity evaluation methodologies for the main components. Recently, the integrity evaluation techniques were broadly studied regarding the license renewal of nuclear power plants which were approaching their design lives. Since the integrity evaluation process requires special knowledges and complicated calculation procedures, it has been allowed only to experts in the specified area. In this paper, an integrity evaluation system for reactor pressure vessel was developed. RVIES(Reactor Vessel Integrity Evaluation System) provides four specific integrity evaluation procedures covering PTS(Pressurized Thermal Shock) analysis, P-T(Pressure-Temperature) limit curve generation, USE(Upper Shelf Energy) analysis and Fatigue analysis. Each module was verified by comparing with published results.

Seismic Analysis of the Main Control Boards for Nuclear Power Plant (원자력발전소의 Main Control Boards에 대한 내진 해석)

  • Byeon, Hoon-Seok;Lee, Joon-Keun;Kim, Jin-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.498-498
    • /
    • 2001
  • Seismic qualification of the Main Control Boards for nuclear power plants has been performed with the guideline of AS ME Section III. US NRC Reg. Guide and IEEE 344 code. The analysis model of the Main Control Boards is consist of beam. shell and mass element by using the finite element method. and, at the same time. the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz. which is the upper frequency limit of the seismic load, the response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and functional integrity of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As all the combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, it concludes the Main Control Boards is dynamically qualified for seismic conditions. Although the authors had confirmed the structural and functional integrity of both Main Control Boards and all the component, in this paper only the seismic analysis of the Main Control Board is introduced.

  • PDF

Performance Analysis of Convolution coded 16 QAM Signal with Maximum Ratio Combining Diversity in Rician Fading and Impulsive Noise Environments (라이시안 페이딩과 임펄스 잡음이 존재하는 환경에서 최대비 합성 다이버시티 기법과 길쌈 부호화 기법을 채용한 16 QAM 신호의 성능해석)

  • Kim, Kwang-Rak;Lee, Ho-Young;Kim, Eon-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.663-668
    • /
    • 2008
  • In this paper, we analyzed the error rate Performance of convolution coded 16 QAM signal in impulsive noise Environments. We used convolution rode and maximum ratio combining diversity for performance improvement. We analyzed the error rate performance of 16 QAM signal in implusive noise environments compared with gaussian noise environments. As a result of analysis, there is a BER segment where the efficiency of system does not improve until which limit to raise a signal power potential from impulsive noise environment when the signal power potential which goes over this limit is supplied, BER efficiency improve much more.

  • PDF

PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

  • Ali, Ahmer;Hayah, Nadin Abu;Kim, Dookie;Cho, Ung Gook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.699-706
    • /
    • 2014
  • The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

Eclipse Spectrum of Her X-1 Observed by ASCA in the Low Intensity State

  • Choi, C.S.;Seon, K.I.
    • Bulletin of the Korean Space Science Society
    • /
    • 1995.10a
    • /
    • pp.30-30
    • /
    • 1995
  • We present the results of analysis on the X-ray observations of the binary X-ray pulsar Her X-I. made with ASCA/SIS on August 13-14. 1993. An eclipse transition from ingress to egress was fully covered by the observations. The main findings are as follows; (1) a model of power-law plus black-body is required to interpret the entire eclipse spectrum. and the black-body component appears at < 0.7 keV. (2) the power-law continuum which has photon index ${\alpha}\;=\;{0.84^{\;+0.14}}_{\;-0.19}$ is very similar to that of detected by Ginga/LAC (${\alpha}\;=\;0.80\;{\pm}\;0.04$), (3) the calculated eclipse flux of $2^{-10}\;keV.{\;}~{\;}1.8{\pm}10^{-11}{\;}ergs{\;}cm^{-2}s^{-1}$, is consistent with the Ginga observation carried out in the high intensity state ~2.0{\pm}10^{-11}{\;}ergs{\;}cm^{-2}s^{-1}$, (4) there is no significant absorption feature. and an upper limit of the aborption column $NH{\;}\leq{\;}3{\pm}10^{20}\;cm^{-2}$ is determined at the 90% confidence limit. Based on these results, we suggest that extended matter surrounding the binary system should be existed persistently with stable conditions, and scattering of the source continuum by the matter is responsible for the eclipse emission.ission.

  • PDF

A Study on the Transformer Spare Capacity in the Existing Apartments for the Future Growth of Electric Vehicles (전기자동차 보급에 따른 기존 아파트의 변압기용량 한계시점에 대한 연구)

  • Choi, Jihun;Kim, Sung-Yul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1949-1957
    • /
    • 2016
  • Rapid Expansion of EVs(Electric Vehicles) is inevitable trends, to comply with eco-friendly energy paradigm according to Paris Agreement and to solve the environment problems such as global warming. In this paper, we analyze the limit point of transformer acceptable capacity as the increase of power demand considering EVs supply in the near future. Through the analysis of transformer utilization, we suggest methods to analyze the spare capacity of transformer for the case of optimal efficiency operation and emergency operation respectively. We have the results of 18.4~29% spare capacity for the charging infrastructure to the rated capacity of transformer by analyzing the existing sample apartments. It is analyzed that the acceptable number of EVs is 0.09~0.14 for optimal efficiency operation and 0.06~0.13 for emergency operation. Therefore, it is analyzed the power demand of EV will exceed the existing transformer spare capacity in 7~8 years as the annual growth rate of EVs is prospected 112.5% considering current annual growth rate of EVs and the government EV supply policy.

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6호기용 공기정화기에 대한 내진검증)

  • Lee, Joon-Keun;Kim, Jin-Young;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.404-409
    • /
    • 2001
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed is condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

  • PDF

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

Development of Evaluation Method for Transmission Marginal Loss Factors Considering the Electrical Distance (전기적인 거리를 고려한 한계송전손실계수 산정 방법론 개발)

  • Park, Jong-Bae;Lee, Ki-Song;Lee, Chan-Joo;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.488-490
    • /
    • 2003
  • This paprer presents the evlauation method for transmission marginal loss factors(MLFs) considering the electrical distance. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of generation by the change of the load. MLFs are classified as load-focused MLFs and generator-focused MLFs. The existing evaluation method for generator focused MLFs has the limit not reflecting the characteristic of power systems since the method has been introduced the assumption which the output of a generator is supplied to all of the load buses on the power system. Therefore, to overcome the limit of evaluation method for generator-focused MLFs, we have applied the process, which it approximately can find the load buses that supplied a generator to the method. We have applied the proposed method to the simple 5-bus system because the proposed method is not analytic but the hybrid method incorporated the Kirschen and Bialek's algorithm to the existing analytic method to find the load buses supplied by a generator.

  • PDF