• Title/Summary/Keyword: Power limit

Search Result 1,458, Processing Time 0.03 seconds

저형상비 토카막 중성자원에 기반한 핵변환로 형상 연구

  • Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.414.2-414.2
    • /
    • 2016
  • The optimal configuration of a transmutation reactor based on a low aspect ratio tokamak is determined using coupled analysis of tokamak systems and neutron transport. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on a neutron multiplication, a tritium-breeding ratio, and a power density. It is shown that a breeding blanket model has an impact on the radial build of a transmutation blanket. A burn cycle has to be determined to limit a fast neutron fluence of a plasma facing material below a radiation damage limit.

  • PDF

Reverberation time evaluation considering the acoustical characteristics of a cabin (선실의 음향학적 특성을 고려한 잔향시간 평가)

  • Choi, Jae-Woong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.837-842
    • /
    • 2000
  • Reverberation time is the well known theory and widely used in commercial apparatus to get reverberation time. However large fluctuation in low frequency region occurs in a small cabin due to superposition of a few modes. This paper investigates this phenomena in terms of modal density in frequency domain and suggests a method to get lower limit of reverberation time using the integration of the time-SPL diagram. The suggestion is confirmed by simulation and shows reasonable results to get lower limit of reverberation time and maximum absorbing power in the cabin.

  • PDF

Reliability Assessments and Design Load Factors for Reinforced Concrete Containment Structures of Nuclear Power Plant

  • Han, Bong-Koo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.444-450
    • /
    • 1997
  • The current ASME code for reinforced concrete containment structures are not based on probability concepts. The stochastic nature of natural hazard or accidental loads and the variations of material properties require a probabilistic approach for a rational assessment of structural safety and performance. The paper develops design load factors for the serviceability limit state of reinforced concrete containment structures. The target limit state probability is determined and the load factors are calculated by the numerical analysis. Design load factors are proposed and carried out the reliability assessments.

  • PDF

A Test of Multivariate Normality Oriented for Testing Elliptical Symmetry

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.221-231
    • /
    • 2006
  • A chi-squared test of multivariate normality is suggested which is oriented for detecting deviations from elliptical symmetry. We derive the limiting distribution of the test statistic via a central limit theorem on empirical processes. A simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we compare the power of our method with those of other popular tests of multivariate normality under a non-normal distribution.

  • PDF

Analysis of single-phase PMSM capability curve using motor parameter, voltage limit and current limit (전동기 제정수와 전압 및 전류 제한에 따른 단상 영구자석 동기전동기의 능력곡선 분석)

  • Choi, Seungbo;Lee, Wook-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.400-401
    • /
    • 2019
  • 본 논문에서는 전동기 제정수와 전압 및 전류제한 값에 따른 단상 영구자석 동기전동기의 능력곡선을 분석하였다. 역기전력 상수와 고정자 인덕턴스 및 전압 전류 제한값에 따라 영구자석 동기전동기의 능력곡선이 변하게 되며, 최대토크를 얻을 수 있는 인가전압의 크기 및 위상이 결정된다. 제안한 능력곡선의 분석방법을 통하여 얻은 최대토크에서의 인가전압을 컴퓨터 모의실험으로 검증하였다.

  • PDF

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Development of Speed Limit Safety Wheel used by Trochoid Gear (트로코이드 기어를 이용한 속도제한 안전바퀴 개발)

  • Lee, Dongkeun;Lee, Siyoung;Hong, Youngjun;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1340-1345
    • /
    • 2012
  • Industrial products developed in recent years have focused on usability and stability. Especially, for the products used in daily life, steady efforts have been made to secure the safety. Among them, the products equipped with wheels such as strollers, shopping carts, and carriers can occur the safety accidents by unintended over speed at a ramp. Therefore, development of speed limit device is required to prevent such accidents. However, the existing speed limit devices are very expensive and have a complex drive principle, so it's generally difficult to apply them. In this study, a simple speed limit wheel is suggested which can replace the previous complex and inconvenient speed limit devices. The developed speed limit wheel can be simply applied to existing products by changing the wheels. In addition, it has an advantage to operate only by mechanical mechanism without power supply. Thus it can minimize the cost and waste of resources. For this purpose, the operating condition of the target products was analyzed, and trochoid gear mechanisms were selected for the speed limit. Based on this, finite element analysis was conducted to estimate the operating mechanism. After the prototype of the wheel was produced, the performance under various conditions was tested and has been improved.

Transient Torque Maximizing Strantegy of Induction Machine in Field Weakening Region (약계자 영역에서의 유도전동기 과도 토오크 최대화 기법)

  • 송승호;최종우;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.474-482
    • /
    • 1999
  • In this paper, a new field weakening algorithm which maximizes the output torque not only in steady state b but also in transient state is proposed. Considering both voltage and current limit of system, analytic solutions f for optimal torque utilization in field weakening region I and region II are obtained. This algorithm finds optimal currents considering dynamic vol떠ge limit based on flux and speed. So the maximum usage of stator v voltage even in transient state results in the maximum torque and fast response time. Simulation and e experimental results show the effectiveness of the proposed field weakening scheme.

  • PDF

Computer Simulation of Multiple Reflection Waves for Thickness Measurement by Ultrasonic Spectroscopy (초음파 Spectroscopy에 의한 두께측정을 위한 다중반사파의 시뮬레이션)

  • Park, I.G.;Han, E.K.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 1992
  • Ultrasonic spectroscopy is likely to become a very powerful NDE method for detection of microfects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides a useful information that cannot be obtained by a conventional ultrasonic measuring system. In this paper, we considered a thin film below the limit of ultrasonic distance resolution sandwitched between two substances as acoustical analysis model, demonstrated the usefulness of ultrasonic spectroscopic analysis technique using information of ultrasonic frequency for measurements of thin film thickness, regardless of interference phenomenon and phase reversion of ultrasonic waveform. By using frequency intervals(${\triangle}f$) of periodic minima from the ratio of reference power spectrum of reflective waveform obtained a sample to power spectrum of multiple reflective waves obtained interference phenomenon caused by ultrasonic waves reflected at the upper and lower surfaces of a thin layer, can measured even dimensions of interest are smaller than the ultrasonic wave length with simplicity and accuracy.

  • PDF