• Title/Summary/Keyword: Power integrity analysis

Search Result 325, Processing Time 0.028 seconds

A study on the security analysis and evaluation of the web based metering/billing system for the value storage electricity meter (전력전자상거래(VSEM)를 위한 웹기반 미터링/과금 시스템의 보안성 분석 및 평가에 관한 연구)

  • Kang Hwan-Il;Song Young-Ki;Kang Hwan-Soo;Jo Jin-Hyung;Jang Woo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.462-464
    • /
    • 2006
  • 본 연구는 제4세대 미터링(Metering) 기술을 이용한 전력전자상거래 즉 VSEM(Value Storage Electricity Meter)을 위한 웹기반 미터링 시스템의 보안성 분석 및 평가에 관한 연구이다. 특히 수요자 측면에서 스마트카드(지불결제)를 이용한 본인 확인(SIM카드), 키 값 확인, VSEM서버에서의 각 수요자와 공급자 데이터 사이의 무결성 확인(Integrity)과 부인 방지(Non-repudiation)를 위한 기존 시스템의 보안 문제를 분석하고 이를 해결할 수 있는 보안 모델을 제안한다.

  • PDF

SURGE LINE STRESS DUE TO THERMAL STRATIFICATION

  • Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.239-250
    • /
    • 2008
  • If there is a water flow with a range of temperature inside a pipe, the wanner water tends to float on top of the cooler water because it is lighter, resulting in the upper portion of the pipe being hotter than the lower portion. Under these conditions, such thermal stratification can play an important role in the aging of nuclear power plant piping because of the stress caused by the temperature difference and the cyclic temperature changes. This stress can limit the lifetime of the piping, even leading to penetrating cracks. Investigated in this study is the effect of thermal stratification on the structural integrity of the pressurizer surge line, which is reported to be one of the pipes most severely affected. Finite element models of the surge line are developed using several element types available in a general purpose structural analysis program and stress analyses are performed to determine the response characteristics for the various types of top-to-bottom temperature differentials due to thermal stratification. Fatigue analyses are also performed and an allowable environmental correction factor is suggested.

A Study on Severe Accident Management Scheme using LOCA Sequence Database System (원자력발전소의 냉각재상실사고 특성DB를 활용한 중대사고 관리체계연구)

  • Choi, Young;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.172-178
    • /
    • 2014
  • In terms of an accident management, the cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results since the Three Mile Island (TMI) accident. The objectives of this paper are to explain how to identify the plant response and cope with its vulnerabilities using the probabilistic safety assessment (PSA) quantified results and severe accident database SARDB(Severe Accident Risk Data Bank) based on sequences analysis results. Although PSA has been performed for the Korean Standard Power Plants (KSNPs), and that it considered the necessary sequences for an assessment of the containment integrity. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by a knowledge-based technique, and the expected plant behaviour. The plant model used in this paper is oriented to the cases of loss of coolant accident (LOCA) is be used as a training simulator for a severe accident management.

Risk Assessment for Abolition of Gross Containment Leak Monitoring System Test in CANDU Design Plant (중수로 원자로건물 총누설감시계통 시험 중지에 따른 리스크 영향 평가)

  • Bae, Yeon-Kyoung;Na, Jang-Hwan;Bahng, Ki-In
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.123-130
    • /
    • 2015
  • Wolsong Unit 2,3&4 has been performing a containment integrity test during power operation. This test could impact to the safe operation during test. If an accident occurs during pressure dropping phase, reactor trip can be delayed because of the increased pressure difference which causes a time delay to reach the trip set-point. On the contrary, if an accident occurs during pressure increasing phase, reactor trip could be accelerated because the pressure difference to the trip set-point decrease. Point Lepreau nuclear power plant, which installed GCLMS (Gross Containment Leakage Monitoring System) in 1990, has discontinued the test since 1992 due to these adverse effects. Therefore, we evaluated the risk to obviate the GCLMS test based on PWR's ILRT (Integrated Leak Rate Test) extension methodologies. The results demonstrate that risk increase rate is not high in case of performing only ILRT test at every 5 years instead of doing GCLMS test at every 1.5 years. In addition, the result shows that GCLMS test can be removed on a risk-informed perspective since risk increasement is in acceptable area of regulatory acceptance criteria.

Development of Wall Thinning Distinction Method using the Multi-inspecting UT Data of Carbon Steel Piping (탄소강배관 다중 UT 측정두께를 활용한 감육여부 판별법 개발)

  • Hwang, Kyeong Mo;Yun, Hun;Lee, Chan Kyoo
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.173-178
    • /
    • 2012
  • To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during refueling outages and determined whether repair or replacement after evaluating UT (Ultrasonic Test) data. When the existing UT data evaluation methods, such as Band, Blanket, PTP (Point to Point) Methods, are applied to a certain pipe component, unnecessary re-inspecting situations may be generated even though the component does not thinned. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing of newly inspected components may be generated. EPRI (Electric Power Research Institute) in USA has suggested several statistical methods, TPM (Total Point Method), LSS (Least Square Slope) Method, etc. to distinguish whether multiple inspecting components have thinned or not. This paper presents the analysis results for multiple inspecting components over three times based on both NAM (Near Area of Minimum) Method developed by KEPCO-E&C and the other methods suggested by EPRI.

Statistical analysis of parameter estimation of a probabilistic crack initiation model for Alloy 182 weld considering right-censored data and the covariate effect

  • Park, Jae Phil;Park, Chanseok;Oh, Young-Jin;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • To ensure the structural integrity of nuclear power plants, it is essential to predict the lifetime of Alloy 182 weld, which is used for welding in nuclear reactors. The lifetime of Alloy 182 weld is directly related to the crack initiation time. Owing to the large time scatter in most crack initiation tests, a probabilistic model, such as the Weibull distribution, has mainly been adopted for prediction. However, since statistically more advanced methods than current typical methods may be applied, we suggest a statistical procedure for parameter estimation of the crack initiation time of Alloy 182 weld, considering right-censored data and the covariate effect. Furthermore, we suggest a procedure for uncertainty evaluation of the estimators based on the bootstrap method. The suggested statistical procedure can be applied not only to Alloy 182 weld but also to any material degradation data set including right-censored data with covariate effect.

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

Sipping Test Technology for Leak Detection of Fission Products from Spent Nuclear Fuel (사용후핵연료 핵분열생성물 누출탐상 Sipping 검사기술)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Young Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2020
  • When a damage occurs in the nuclear fuel burning in the reactor, fission products that should be in the nuclear fuel rod are released into the reactor coolant. In this case, sipping test, a series of non-destructive inspection methods, are used to find leakage in nuclear fuel assemblies during the power plant overhaul period. In addition, the sipping test is also used to check the integrity of the spent fuel for moving to an intermediate dry storage, which is carried out as the first step of nuclear decommissioning, . In this paper, the principle and characteristics of the sipping test are described. The structure of the sipping inspection equipment is largely divided into a suction device that collects fissile material emitted from a damaged assembly and an analysis device that analyzes their nuclides. In order to make good use of the sipping technology, the radioactive level behavior of the primary system coolant and major damage mechanisms in the event of nuclear fuel damage are also introduced. This will be a reference for selecting an appropriate sipping method when dismantling a nuclear power plant in the future.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Prediction of Weld Residual Stress of Narrow Gap Welds (협개선 용접부에 대한 용접잔류응력 예측)

  • Yang, Jun-Seog;Heo, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW.