• Title/Summary/Keyword: Power index law

Search Result 264, Processing Time 0.023 seconds

Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities

  • Bensaid, Ismail;Guenanou, Ahmed
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.45-63
    • /
    • 2017
  • In this article, static deflection and buckling of functionally graded (FG) nanoscale beams made of porous material are carried out based on the nonlocal Timoshenko beam model which captures the small scale influences. The exact position of neutral axis is fixed, to eliminate the stretching and bending coupling due to the unsymmetrical material change along the FG nanobeams thickness. The material properties of FG beam are graded through the thickness on the basis of the power-law form, which is modified to approximate the material properties with two models of porosity phases. By employing Hamilton's principle, the nonlocal governing equations of FG nanobeams are obtained and solved analytically for simply-supported boundary conditions via the Navier-type procedure. Numerical results for deflection and buckling of FG nanoscale beams are presented and validated with those existing in the literature. The influences of small scale parameter, power law index, porosity distribution and slenderness ratio on the static and stability responses of the FG nanobeams are all explored.

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.93-112
    • /
    • 2018
  • An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.

Classification of Ellerman bombs

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.87.1-87.1
    • /
    • 2013
  • Ellerman bombs(EB) are small-scale bright features observed best in the wings of H alpha line. We used the Fast Imaging Solar Spectrograph(FISS) with the 1.6m New Solar Telescope at Big Bear Solar Observatory, in order to investigate characteristics of each EB. We analyzed H alpha line profiles of EBs, and classified EBs by their contrast profiles. To analyse characteristics of EBs, we applied power-law fitting ($C={\alpha}{\Delta}{\lambda}^{-n}$) to the EB contrast profiles. The amplitude ${\alpha}$ is a measure of the strength of an EB event (or the amount of released energy), and the power-law index n is a measure of spatial concentration of energy in the higher layers of the solar atmosphere. With the two parameters, we classified EBs into a few groups. We try to understand the physical properties of each group.

  • PDF

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

Magneto-thermo-elastic analysis of a functionally graded conical shell

  • Mehditabar, A.;Alashti, R. Akbari;Pashaei, M.H.
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.77-96
    • /
    • 2014
  • In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while the poison's ratio is assumed to be constant. The temperature distribution is assumed to be a function of the thickness direction. Governing equations of the truncated conical shell are derived in terms of components of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. Results are obtained for different values of power law index of material properties and effects of thermal load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are compared with those of the finite element method.

A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.313-336
    • /
    • 2017
  • This article investigates vibration behavior of magneto-electro-elastic functionally graded (MEE-FG) nanobeams embedded in two-parameter elastic foundation using a third-order parabolic shear deformation beam theory. Material properties of MEE-FG nanobeam are supposed to be variable throughout the thickness based on power-law model. Based on Eringen's nonlocal elasticity theory which captures the small size effects and using the Hamilton's principle, the nonlocal governing equations of motions are derived and then solved analytically. Then the influences of elastic foundation, magnetic potential, external electric voltage, nonlocal parameter, power-law index and slenderness ratio on the frequencies of the embedded MEE-FG nanobeams are studied.

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Dynamic response of functionally graded plates with a porous middle layer under time-dependent load

  • Dergachova, Nadiia V.;Zou, Guangping
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • A dynamic analytical solution for a simply supported, rectangular functionally graded plate with a porous middle layer under time-dependent load based on a refined third-order shear deformation theory with a cubic variation of in-plane displacements according to the thickness and linear/quadratic transverse displacement is presented. The solution achieved in the trigonometric series form and rests on the Green's function method. Two porosity types and their influence on material properties, and mechanical behavior are considered. The network of pores is assumed to be empty or filled with low-pressure air, and the material properties are calculated using the power-law distribution idealization. Numerical calculations have been carried out to demonstrate the accuracy of the kinematic model for the dynamic problem, the effect of porosity, thickness of porous layers, power-law index, and type of loading on the dynamic response of an imperfect functionally graded material plate.