• 제목/요약/키워드: Power grid

검색결과 2,985건 처리시간 0.028초

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상 (Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines)

  • 강자윤;한대수;서용석;정병창;김정중;박종형;최영준
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

Wind Power Interval Prediction Based on Improved PSO and BP Neural Network

  • Wang, Jidong;Fang, Kaijie;Pang, Wenjie;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.989-995
    • /
    • 2017
  • As is known to all that the output of wind power generation has a character of randomness and volatility because of the influence of natural environment conditions. At present, the research of wind power prediction mainly focuses on point forecasting, which can hardly describe its uncertainty, leading to the fact that its application in practice is low. In this paper, a wind power range prediction model based on the multiple output property of BP neural network is built, and the optimization criterion considering the information of predicted intervals is proposed. Then, improved Particle Swarm Optimization (PSO) algorithm is used to optimize the model. The simulation results of a practical example show that the proposed wind power range prediction model can effectively forecast the output power interval, and provide power grid dispatcher with decision.

전력계통 제어시스템 구조에 따른 사이버 보안대책 수립 (Establishment of Cyber Security Countermeasures amenable to the Structure of Power Monitoring & Control Systems)

  • 우필성;김발호
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1577-1586
    • /
    • 2018
  • The emergence of the Smart Grid is an integrated solution for the next generation power system that combines IT technology in the power system to create optimal energy utilization and various services. However, these convergence technologies (power systems and information communications) are not only improving the related technologies but also producing various problems especially exposure to cyber risk. In particular, the intelligent power grid has security vulnerabilities through real-time information sharing among various organically linked systems, and it is more complicated than the cyber risk problem in the existing IT field and is directly connected to national disaster accidents. Therefore, in order to construct and operate a more stable smart grid, this paper analyzes the system of power system control system in Korea, and proposes a cyber security element definition and a countermeasure establishment method of power monitoring & control systems based on security standards of smart grid (No. SPS-SGSF-121-1-1).

Electrical Automatic Control System Based on the Internet of Things

  • Jiyong, Jin
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.784-793
    • /
    • 2022
  • Grid-connected distributed power generation has been widely used in green energy generation. However, due to the distributed characteristics, distributed power generation is difficult to be dynamically allocated and monitored in the electrical control process. In order to solve this problem, this research combined the Internet of Things (IoT) with the automatic control system of electrical engineering to improve the control strategy of the power grid inverter according to the characteristics of the IoT system. In the research, a connection system of the power grid inverter and the IoT controller were designed, and the application effect was tested by simulation experiments. The results showed that the power grid inverter had strong tracking control ability for current and power control. Meanwhile, the electrical control system of the IoT could independently and dynamically control the three-phase current and power. The given value was reached within 50 ms after the step signal was input, which could protect the power grid from being affected by the current. The overall system could realize effective control, dynamic control and protective control.

계통연계 인버터의 주요 부하 불평형 시 상전류 제어를 통한 부하 상전압 평형 제어 (An Output Voltage Balance Control of Grid Connected Inverter by Phase Current Control at Critical Load Unbalanced Condition)

  • 박태현;김학원;조관열;민준기;최원일
    • 전력전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.22-29
    • /
    • 2023
  • A grid-connected inverter can be used in grid-connected or stand-alone modes. Generally, a grid-connected inverter operates in a grid-connected mode, but the inverter operates in stand-alone mode if grid faults occur. In the stand-alone mode, the grid-connected inverter must supply electric power to a critical load that needs to receive stable power even though grid faults occur. Generally, three-phase loads are used as critical loads, but a single phase is configured in some cases. In these conditions, the critical load is required to unbalance the load power consumption, which makes the three-phase load voltage unbalancd. This unbalanced voltage problem can cause fatal problems to the three-phase critical loads, and thus must be addressed. Hence, this paper proposes an algorithm to solve this unbalanced voltage problem by the individual phase current control. The proposed method is verified using Psim simulation and experiments.

계통연계형 PMSG 풍력발전시스템의 LVRT 동작 분석을 위한 하드웨어 시뮬레이터 (Hardware Simulator for LVRT Operation Analysis of Grid-Tied PMSG Wind Power System)

  • 이재욱;김재혁;최영도;한병문;윤영두
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1219-1226
    • /
    • 2014
  • This paper introduces a hardware simulator for the LVRT operation analysis of the grid-tied PMSG wind power system with a power dissipation circuit. The power dissipation circuit, which is composed of chopper and resistor, suppresses the sudden increase of DC-link voltage in the back-to-back converter of the grid-tied PMSG wind power system. The LVRT operation was first analyzed using computer simulations with PSCAD/EMTDC. A wind power simulator including the power dissipation circuit and the fault simulator composed of variac and IGBT were built to analyze the LVRT operation. Various experiments were conducted to verify the effectiveness of the power dissipation circuit for the LVRT operation. The developed hardware simulator can be extensively utilized for the analysis of various LVRT operations of the grid-tied wind power system.

열병합발전과 스마트 그리드 기술과의 연계성 검토 (An Investigation of the Connectivity between Combined Heat and Power and Smart Grid Technologies)

  • 김원기;서훈철;이제원;김철환;김용하;김의경;손학식;김길환
    • 전기의세계
    • /
    • 제60권11호
    • /
    • pp.56-63
    • /
    • 2011
  • In the face of global warming and resource depletion, a smart grid has been suggested as one way of contributing to abating the environment problems and increasing energy efficiency. Smart grids utilize renewable energy which has intermittent and irregular output power depending on weather conditions. In order to maintain stability and reliability of the power system, smart grids need to have complementary measures for the possible unstable system conditions. Cogenerating systems such as Combined Heat and Power(CHP) can be one good solution as it has capability of instantly increasing or decreasing output power. Therefore, this paper investigates the connectivity between Combined Heat and Power systems and smart grid technologies. The smart grid national roadmap formulated by South Korea Ministry of Knowledge and Economy and 'IEC Smart Grid Standardization Roadmap' are analyzed to extract related components of the smart grid for the CHP connection. Also, case studies on demonstration projects for smart grids with CHP systems completed or currently being implementing in the world are presented.

  • PDF

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.