• Title/Summary/Keyword: Power grid

Search Result 2,985, Processing Time 0.023 seconds

A Study on the Stability of Micro-Grid System (마이크로그리드 시스템의 안정도에 관한 기초 연구)

  • Son, Kwong-Myoung;Lee, Kye-Byung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.46-53
    • /
    • 2007
  • Micro-grid consists of micro-sources which adopt environmentally friendly and reliable power sources such as Fuel-Cell and Micro-Turbines with independent real and reactive power control capability for providing premium power quality. This paper deals with the basic aspect of dynamic modeling and the stability analysis of the micro-grid system. The fundamental frequency model of the micro-source inverters are considered to form a dynamic model of the micro-grid system Stability analysis is performed based on the linearized dynamic model of the micro-grid system Case study results show the parameters affecting the stability of the micro-grid.

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Gi-Hyun;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

Robust Adaptive Power Control against Electric Load Changes in Islanded Micro-grid (독립형 마이크로그리드의 부하 변동에 대한 강인 적응형 전력 제어기법)

  • Ha, Yang;Cho, Hyun Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.175-182
    • /
    • 2018
  • In recent years, micro-grid has been widely focused on the fields of renewal energy systems. This paper proposes a novel robust power converter control against arbitrary electric load changes for islanded micro-grid topology. First, we provide a state-space representation of our micro-grid model including power converter and electric load circuit. And then a state feedback control method is applied to construct a nominal control framework. Next, we propose a robust adaptive control law to enhance a control performance against unexpected load perturbation. In addition, we analytically investigate a passivity property for the micro-grid model and carry out computer simulation to demonstrate superiority and reliability of the proposed control methodology.

A Study on Operation Algorithm of Grid-Connected 3-Level NPC Inverter Considering Common-Mode Voltage and THD (공통 모드 전압 및 THD를 고려한 계통연계형 3레벨 NPC 인버터의 운용 알고리즘 연구)

  • Hye-Cheon Kim;Jung-Wook Park
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A grid-connected 3-level NPC inverter is a power conversion device that connects renewable energy generators, such as photovoltaic or wind turbines to the grid. Although many studies have focused on this inverter, commercializing it requires strictly satisfying various safety and power quality-related standards. Among many standards, leakage current and grid current total harmonic distortion(THD) can be affected by external factors such as installation environment, aging, and grid conditions. Hence, inverter operations that can satisfy these standards need to be explored. In this study a 3-level NPC inverter operation algorithm using the Phase Opposition Disposition-PWM method that can effectively reduce leakage current and switching frequency adjustment to reduce THD effectively has been proposed.

Economic Evaluation of Power Grid Interconnection between Offshore Wind Power Plants (해상풍력발전단지 간의 전력계통 연계에 관한 경제성 분석 연구)

  • Moon, Won-Sik;Jo, Ara;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • An offshore wind power plant (WPP) is very expensive and different from an onshore wind power system in many ways. There has been a continuous increase in the capacity of the offshore WPPs. Therefore it is essential to analyze the feasibility and reliability of the offshore wind power to optimize their redundancy. Besides, it is very important to study a planning for grid interconnection of adjacent offshore WPPs. This paper proposes a economic evaluation method to interconnect with adjacent offshore substations in offshore wind power grid. Also, we suggest the probabilistic reliability method to calculate a probabilistic power output of the wind turbine and a cost of the expected energy not supplied that is used as the reliability index of the power system.

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.

Analytical and Experimental Validation of Parasitic Components Influence in SiC MOSFET Three-Phase Grid-connected Inverter

  • Liu, Yitao;Song, Zhendong;Yin, Shan;Peng, Jianchun;Jiang, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.591-601
    • /
    • 2019
  • With the development of renewable energy, grid-connected inverter technology has become an important research area. When compared with traditional silicon IGBT power devices, the silicon carbide (SiC) MOSFET shows obvious advantages in terms of its high-power density, low power loss and high-efficiency power supply system. It is suggested that this technology is highly suitable for three-phase AC motors, renewable energy vehicles, aerospace and military power supplies, etc. This paper focuses on the SiC MOSFET behaviors that concern the parasitic component influence throughout the whole working process, which is based on a three-phase grid-connected inverter. A high-speed model of power switch devices is built and theoretically analyzed. Then the power loss is determined through experimental validation.

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.

Coordinated Control of Reactive Power between STATCOMs and Wind Farms for PCC Voltage Regulation

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Van, Tan Luong;Kang, Jong-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.909-918
    • /
    • 2013
  • This paper proposes a coordinated control of the reactive power between the STATCOMs (static synchronous compensators) and the grid-side converters (GSC) of wind farms equipped with PMSGs (permanent-magnet synchronous generators), by which the voltage fluctuations at the PCC (point of common coupling) are mitigated in the steady state. In addition, the level of voltage sags is reduced during grid faults. To do this, the GSC and the STATCOM supply reactive power to the grid coordinately, where the GSCs are fully utilized to provide the reactive power for the grid prior to the STATCOM operation. For this, the GSC capability of delivering active and reactive power under variable wind speed conditions is analyzed in detail. In addition, the PCC voltage regulation of the power systems integrated with large wind farms are analyzed for short-term and long-term operations. With this coordinated control scheme, the low power capacity of STATCOMs can be used to achieve the low-voltage ride-through (LVRT) capability of the wind farms during grid faults. The effectiveness of the proposed strategy has been verified by PSCAD/EMTDC simulation results.

Optimal Design of Power Grid and Location of Offshore Substation for Offshore Wind Power Plant (해상풍력발전단지의 전력망과 해상변전소 위치에 대한 최적 설계)

  • Moon, Won-Sik;Won, Jong-Nam;Huh, Jae-Sun;Jo, Ara;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.984-991
    • /
    • 2015
  • This paper presents the methodology for optimal design of power grid for offshore wind power plant (OWPP) and optimum location of offshore substation. The proposed optimization process is based on a genetic algorithm, where the objective cost model is composed of investment, power loss, repair, and reliability cost using the net present value during the whole OWPP life cycle. A probability wind power output is modeled to reflect the characteristics of a wind power plant that produces electricity through wind and to calculate the reliability cost called expected energy not supplied. The main objective is to find the minimum cost for grid connection topology by submarine cables which cannot cross each other. Cable crossing was set as a constraint in the optimization algorithm of grid topology of the wind power plant. On the basis of this method, a case study is conducted to validate the model by simulating a 100-MW OWF.