• Title/Summary/Keyword: Power flow management

Search Result 288, Processing Time 0.021 seconds

A Method to Calculate Charge for Reactive Power Service under Competition of Electric Power Utilities

  • Ro, Kyoung-Soo;Park, Sung-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.39-44
    • /
    • 2001
  • As electric power systems have been moving from vertically integrated utilities to a deregulated environment, the charging of reactive power management is a new challenging them for market operators. This paper proposes a new methodology to compute the costs of providing reactive power management service in a competitive electrical power market. The proposed formulation, which is basically different from those shown in the literature, consists of two parts. One is to recover investment capital costs of reactive power supporting equipment based on a reactive power flow tracing algorithm. The other is to recover operational costs based on variable spot prices using the optimal power flow algorithm. The charging shapes resulted from the proposed approach exhibit a quite good meaning viewed from a practical sense. It turns out that reactive power charged are mostly due to recovery of capital costs and slightly due to recovery of operational costs. The methods can be useful in providing additional insight into power system operation and can be used to determined tariffs of a reactive power management service.

  • PDF

Methodology of Cyber Security Assessment in the Smart Grid

  • Woo, Pil Sung;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.495-501
    • /
    • 2017
  • The introduction of smart grid, which is an innovative application of digital processing and communications to the power grid, might lead to more and more cyber threats originated from IT systems. In other words, The Energy Management System (EMS) and other communication networks interact with the power system on a real time basis, so it is important to understand the interaction between two layers to protect the power system from potential cyber threats. This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. In this study, the optimal power flow (OPF) and Power Flow Tracing are used to assess the interaction between the EMS and the power system. Through OPF and Power Flow Tracing based analysis, the physical and economic impacts from potential cyber threats are assessed, and thereby the quantitative risks are measured in a monetary unit.

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

A Study About Grid Impose Method On Real-Time Simulator For Wind-Farm Management System (풍력발전단지 관리·분석 시스템의 Real-Time Simulator 도입을 위한 계통모델 연동방안 연구)

  • Jung, Seungmin;Yoo, Yeuntae;Kim, Hyun-Wook;Jang, Gilsoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.28-37
    • /
    • 2015
  • Owing to the variability of large-scaled wind power system, the development of wind farm management technologies and related compensation methods have been receiving attention. To provide an accurate and reliable output power, certain wind farm adopts a specified management system including a wind prediction model and grid expectation solutions for considering grid condition. Those technologies are focused on improving the reliability and stability issues of wind farms, which can affect not only nearby system devices but also a voltage condition of utility grid. Therefore, to adapt the develop management system, an expectation process about voltage condition of Point of Common Coupling should be integrated in operating system for responding system requirements in real-time basis. This paper introduce a grid imposing method for a real-time based wind farm management system. The expected power can be transferred to the power flow section and the required quantity about reactive power can be calculated through the proposed system. For the verification process, the gauss-seidel method is introduced in the Matlab/Simulink for analysing power flow condition. The entire simulation process was designed to interwork with PSCAD for verifying real power system condition.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

A Method to Calculate a Service Charge for Reactive Power/Voltage Control under Competition of Power Utilities (전력시장 경쟁체제에서 무효전력/전압 제어 서비스의 가격책정 방법에 관한 연구)

  • Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.77-82
    • /
    • 2001
  • As electric power systems have been moving from vertically integrated utilities to a deregulated environment, the charging of reactive power management is a new challenging theme for market operators. This paper proposes a new methodology to compute the costs of providing reactive power management service in a competitive electrical power market. The proposed formulation, which is basically different from those shown in the literature, consists of two parts. One is to recover investment capital costs of reactive power supporting equipment based on a reactive power flow tracing algorithm. The other is to recover operational costs based on variable spot prices using the optimal power flow algorithm. The charging shapes resulted from the proposed approach exhibit a quite good meaning viewed from a practical sense. It turns out that reactive power charges are mostly due to recovery of capital costs and slightly due to recovery of operational costs. The method can be useful in providing additional insight into power system operation and can be used to determine tariffs of a reactive power management service.

  • PDF

Database Construction to Compute Representative Model of Load Power Factor in Bulk Power System (대규모 전력계통의 부하역률 대표모델 산정을 위한 데이터베이스 구축)

  • Cho, Jong-Man;Lee, Hyo-Sang;Lee, Jung-He;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.83-89
    • /
    • 2004
  • The importance of the Load Power Factor(LPF) management is newly noticed from the voltage management and operation of the power system due to the rapidly increasing reactive power consumed. Therefore, this paper proposes the regional, seasonal and hourly Representative Model of Load Power Factor(RMLPF) considering load characteristics of all 154/22.9[kV] substations. The RMLPF is used to present a precision improvement of power system analysis and security. Computation of representative model of load utilizes the average flow method based on moving average method. The Energy Management System(EMS) data are used as the source to assess the load power factor.

A Study on the Validation Methodology of Network Analysis Applications in Energy Management Systems (계통운영시스템 계통해석 프로그램 검증 방안에 관한 연구)

  • Cho, Yoon-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.27-36
    • /
    • 2014
  • Network analysis applications in energy management systems play a key role in the economic and reliable operation of power systems. In order to provide operators with useful network information, the accurate results of topology processing, state estimation, power flow, and contingency analysis must be simulated. This paper proposes a validation methodology of network analysis applications in energy management systems. The energy management systems was checked to ensure that it meets the originally specified functions based on the proposed methodology. In addition, the performance of state estimation is evaluated with the reference of the proposed methodology. The proposed methodology is being conducted by energy management systems and the Korean power systems have been utilized for the test systems.

A flow-directed minimal path sets method for success path planning and performance analysis

  • Zhanyu He;Jun Yang;Yueming Hong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1603-1618
    • /
    • 2024
  • Emergency operation plans are indispensable elements for effective process safety management especially when unanticipated events occur under extreme situations. In the paper, a synthesis framework is proposed for the integration success path planning and performance analysis. Within the synthesis framework, success path planning is implemented through flow-directed signal tracing, renaming and reconstruction from a complete collection of Minimal Path Sets (MPSs) that are obtained using graph traversal search on GO-FLOW model diagram. The performance of success paths is then evaluated and prioritized according to the task complexity and probability calculation of MPSs for optimum action plans identification. Finally, an Auxiliary Feed Water System of Pressurized Water Reactor (PWR-AFWS) is taken as an example system to demonstrate the flow-directed MPSs search method for success path planning and performance analysis. It is concluded that the synthesis framework is capable of providing procedural guidance for emergency response and safety management with optimal success path planning under extreme situations.