• 제목/요약/키워드: Power flow finite element method(PFFEM)

검색결과 20건 처리시간 0.022초

파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석 (Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis)

  • 권현웅;홍석윤;이상영;황아롬;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

진동파워흐름해석의 주파수 평균해석에 대한 연구 (Research on Frequency Average Analysis of vibrational Power Flow Analysis)

  • 이재민;홍석윤;박영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.971-977
    • /
    • 2005
  • Power Flow Analysis (PFA) is developed for the effective predictions of frequency-averaged vibrational response in medium-to-high frequency ranges. In PFA, the power coefficients of semi-infinite structure and for-field energy density are used to predict the vibrational responses of structures. Generally, at high frequencies, PFA can predict narrow-band frequency-averaged vibrational responses of built-up structures. However, in low- to medium frequency ranges, the dynamic responses obtained by PFA represent broad-band frequency-averaged vibrational energy densities. For the prediction of vibrational response variance in Power Flow Finite Element Method (PFFEM), the variances of input power and joint element matrix describing structural coupling relationship are derived. Finally, for the validity of developed formulation, numerical examples for two co-planer plates are performed and the vibrational response variance of the structure are compared with the results of classical and PFFEM solutions.

  • PDF

중고주파수 대역의 회전형 압축기 진동소음 해석 (Vibration and Noise Analysis for Rotary Compressor in Medium-to-high Frequency Ranges)

  • 권현웅;송지훈;홍석윤;하종훈
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1033-1041
    • /
    • 2012
  • Power flow analysis(PFA) is introduced for solving the noise and vibration analysis of system structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C++}$ R4 based on power flow finite element method(PFFEM) and the noise prediction software, $NASPFA_{C++}$ R1 based on power flow boundary element method(PFBEM) are developed. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the rotary compressor. PFFEM is employed to analyze the vibrational responses of the rotary compressor, and PFBEM is applied to analyze the radiation noise around rotary compressor. The vibrational energy of the structure is used as an acoustic intensity boundary condition of PFBEM. Numerical simulations are presented for the rotary compressor, and reliable results have been obtained.

중고주파에서의 새로운 진동해석시스템, PFFEM 개발연구 (Development of PFFEM, the new vibroacoustic analysis system in medium-to-high frequency ranges)

  • 서성훈;홍석윤;박도현;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.325-333
    • /
    • 2000
  • To predict vibrational energy density and intensity of partitioned complex system structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint plate elements. Using the developed PFFEM program the energy density and intensity of the submarine and automobile shape structures are predicted with a harmonic point force at a single frequency.

  • PDF

파워흐름해석법을 이용한 자동차 구조물의 진동/소음 예측 프로그램 개발 (Development of Vibration and Noise Prediction Softwares for Vehicle Structures Using Power Flow Analysis)

  • 이호원;홍석윤;서성훈;권현웅;박영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.391-397
    • /
    • 2005
  • Power Flow Analysis(PFA) is used as the promising tools for the vibration and noise predictions of complex structures in medium-to-high frequency ranges. When the noise and vibration of a complex structure are analyzed, Power Flow finite Element Method combining PFA with FEM is efficient in vibration analysis, and Power Flow Boundary element Method combining PFA with BEM is usful in noise analysis. PFFEM software, PFADS has been developed for the vibration analysis of coupled system structures. Also, NASPFA, the noise analysis software based on PFBEM, has been developed. Through the several upgrades, the current version PFADS R3 and NASPFA R2 are used for the vibration and noise analysis of system structures in medium-to-high frequency ranges. In this paper, the structure and function of each software are explained, and the vibration and noise levels of vehicle structures predicted by each software are shown.

  • PDF

파워흐름해석 프로그램을 이용한 2300 TEU 컨테이너선의 중고주파 대역 진동해석 (Vibration analysis of 2300 TEU container ship using power flow analysis program in medium-to-high frequency ranges)

  • 서성훈;박영호;홍석윤;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1061-1066
    • /
    • 2001
  • To predict vibrational energy density and intensity of beam-plate coupled complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for plate, beam and some coupled structural elements are developed. The flexural, longitudinal and shear waves in plates are formulated and the joint element equations for multi-couped plates are fully developed. Also the wave transmission approach has been introduced to cover the energy transmission and reflection at the joint elements. Using the developed PFFEM program, vibration analysis for 2300TEU container ship model is performed and here the model data for this program are obtained by converting fonner FE model for structural analysis. This program predicts successfully the vibrational energy density and intensity upto 8,000 Hz for the ship model with over 50,000 DOF.

  • PDF

파워흐름유한요소해석 프로그램의 특성과 이를 이용한 자동차 진동해석 (Characteristics of PFFEM program and vibration analysis of automobile using the developed program)

  • 박영호;홍석윤;서성훈;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1083-1088
    • /
    • 2001
  • To predict vibrational energy density and intensity of complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate, beam and some coupled structural elements are developed at present. The vibration energy density and intensity of foreign vehicle is predicted successfully with FE full model of 60,000 DOF using the developed PFFEM program.

  • PDF

파워흐름유한요소법의 진동해석 결과를 이용한 구조물의 방사소음 해석시스템 개발 (Development of Sound Radiation Analysis System Using the Results of Power Flow Finite Element Method)

  • 이호원;홍석윤
    • 한국음향학회지
    • /
    • 제20권7호
    • /
    • pp.21-30
    • /
    • 2001
  • 중고주파수 대역에서 구조물의 진동해석에 사용되는 새로운 기법인 파워흐름유한요소법과 음향방사문제를 해결하는데 사용되는 음향경계요소법을 이용하여 구조물의 진동해석에서 방사소음해석까지 일련의 과정이 순차적으로 이루어지는 해석시스템을 구축하였다. 평판으로 이루어진 임의의 형상 구조물의 진동해석을 수행하고, 이 때 얻어지는 표면에서의 에너지밀도를 음향해석을 위한 속도경계조건으로 활용하여 진동-소음해석을 수행하였다. 개발된 진동-소음해석 시스템의 검증을 위해 간단한 형상의 구조물을 모델링하여 상용화 패키지(SYSNOISE)의 해석결과와 비교하였으며 또한 여러 다양한 형상의 구조물에 대해서도 본 해석시스템을 적용하여 진동-소음해석을 수행하였다.

  • PDF

파워흐름해석법을 이용한 중고주파수 대역 소음해석 프로그램 개발 (Development of Noise Analysis Program by using Power Flow Analysis in Medium-to-high Frequency Ranges)

  • 권현웅;송지훈;홍석윤
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.384-390
    • /
    • 2012
  • Power Flow Analysis (PFA) is introduced for solving the noise and vibration analysis of structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C{+}{+}}$ R4 based on Power Flow Finite Element Method (PFFEM) and the noise prediction software, $NASPFA_{C{+}{+}}$ R1 based on Power Flow Boundary Element Method (PFBEM) are developed. In this paper, the coupling equation which represents relation between structural energy and acoustic energy is developed for vibro-acoustic coupling analysis. And vibro-acoustic coupling analysis software based on PFA and coupling equation is developed. Developed software is composed of translator, cavity-finder, solver and post-processor over all. Translator can translate FE model into PFADS FE model and cavity-finder can automatically make NASPFA BE model from PFADS FE model for noise analysis. The solver module calculates the structural energy density, intensity of structures, the fictitious source on the boundary and the acoustic energy density at the field in acoustic cavities. Some applications of vibro-acoustic coupling analysis software to various structures and cruise ship are shown with reliable results.

파워흐름해석법을 이용한 상선의 수중방사소음해석 (Underwater Radiated Noise Analysis for Commercial Ship Using Power Flow Analysis)

  • 권현웅;홍석윤;송지훈
    • 한국해양공학회지
    • /
    • 제26권4호
    • /
    • pp.30-36
    • /
    • 2012
  • Recently, the underwater radiated noises generated from large commercial ships have become a globally important issue. Countries with large ports and environmental protection organizations demand strict safety guidelines in relation to underwater radiated noise. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and underwater radiated noise of a commercial ship. PFFEM is employed to analyze the vibrational responses of the commercial ship, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate the underwater radiation noise. Numerical simulations are presented for the commercial ship under various frequencies, and reliable results are obtained.