• 제목/요약/키워드: Power flow finite element method(PFFEM)

검색결과 20건 처리시간 0.026초

3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석 (Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method)

  • 김성희;홍석윤;길현권;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

파워흐름해석법의 신뢰성 검증을 위한 원통형 구조물의 진동실험 (Vibration Experiments of the Cylindrical Structure for Verifying the Reliability of Power Flow Finite Element Method)

  • 이호원;홍석윤;박영호;길현권;김창열;전재진;류정수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.290-297
    • /
    • 2002
  • Vibration experiments have been performed to observe the analytic characteristics of power How finite element method(PFFEM) for the reinforced cylindrical structure. For this, the vibration experimental results are compared with the numerical solutions obtained by PFFEM in medium-to-high frequency ranges. Input Power into the experimental structure is measured using the impedance head adhered to the exciter, and that input power is used for the vibration analysis. Using the developed PFFEM program(PFADS), the reinforced cylindrical structure modeled by beam and plate elements is analyzed, and very reliable results for PFFEM are obtained by the comparisons of the experimental results.

  • PDF

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권4E호
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • 박영호;홍석윤
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.164-164
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

부분 제진 평판 진동 해석을 위한 파워흐름유한요소법의 실험적 연구 (Experimental Study On Power Flow Finite Element Method of Vibration of a Plate Partially Covered with a Damping Sheets)

  • 이영현;이진영;길현권;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.496-497
    • /
    • 2009
  • In this paper the power flow finite element method (PFFEM) has been used to analyze the vibration of a plate partially covered with a damping sheet. Experiments have been performed to measure the loss factor and frequency response functions of the plate partially covered with the damping sheet. The data for the loss factor has been used as the input data to predict the vibration of the coupled plates with PFFEM. The comparison between the experimental results and the predicted PFFEM results for the frequency response functions has been performed. It showed that PFFEM can be effectively used to predict structural vibration in medium-to-high frequency ranges.

  • PDF

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

파워흐름해석법을 이용한 진동해석 소프트웨어, PFADS-R3 개발 (Development of Vibration Analysis Software, PFADS-R3 using Power Flow Analysis)

  • 홍석윤;서성훈;박영호;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.824-830
    • /
    • 2003
  • The Power Flow Finite Element Method(PFFEM) offers very promising results in predicting the vibration responses of system structures, and the first PFFEM software, PFADS has been developed in Seoul National University for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, the current version PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints, spring-damper connection and rigid body connection within beam and plate in addition. This software is composed of three parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of PFADS R3, two vehicle models and a container model are examined with respect to major parameters, and reliable results are obtained.

  • PDF

파워흐름유한요소법에 의한 중고주파수 영역에서 단순 평판의 진동 해석 (Analysis of Vibration of a Simple Plate In a Medium-to-High Frequency Range With Power Flow Finite Element Method)

  • 서성훈;홍석윤;길현권;허영
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.125-131
    • /
    • 2003
  • 본 논문에서는 중고주파수 영역에서 진동하는 단순평판의 진동을 해석하기 위하여 파워흐름유한요소법을 적용하였다. 파워흐름해석법에서 주어지는 진동 에너지지배방정식의 해를 구하기 위한 수치해석 도구로써 유한요소법을 활용하였다. 이러한 파워흐름유한요소법을 적용하여 중고주파수 영역에서 진동하는 단순평판의 진동 변위와 진동인텐시티 분포를 구하였다. 또한 수치해 결과를 엄밀해와 유한요소법에 의한 근사해와 비교함으로써, 파워흐름유한요소법은 중고주파수 영역에서 진동 변위 및 진동 인텐시티를 예측하기 위하여 효과적으로 적용될 수 있음을 보였다.

파워흐름유한요소법을 이용한 진동음향 연성해석 연구 (Research on Vibro-acoustic Coupled Analysis using Power Flow Finite Element Method)

  • 김성희;권현웅;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.767-770
    • /
    • 2006
  • To predict vibrational energy density of simple structural-acoustic coupled systems in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) is used, and PFFEM sofiware, PFADS has been developed for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. However, it needs to consider vibro-acoustic coupled analysis to get more accurate results. Prior to implement vibro-acoustic coupled analysis functions in PFADS, research on vibro-acoustic coupled analysis using PFFEH is performed for simple models. These predictions include the indirect transmission path associated, and also the direct transmission path, and the formulation is extended to structural system model by using appropriate modifications to structural-acoustic and acoustic-acoustic joint matrices. Concerning the waves in plate and acoustic, it is possible to calculate the structural-acoustic full matrix of a model using PFFEM, and the formulations developed are implemented for two rooms surrounded by plates.

  • PDF

자동차 도어 진동의 파워흐름해석에 대한 실험적 연구 (Experimental Study on Power Flow Analysis of Vibration of an Automobile Door)

  • 길현권;이용현;이규형;황성국;홍석윤;박영호;서진관;채기상;서성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.782-785
    • /
    • 2006
  • The Power Flow Analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency range. In this paper, Power Flow Finite Element Method (PFFEM) based on PFA has been used to predict the vibration of an automobile door. The predicted results for the frequency response function of the door have been compared with corresponding experimental results. In the experiment, the automobile door has been divided into several subsystems and the loss factor of each subsystem has been measured. The input mobility at a source point has been also measured. The data for the loss factors and the input mobility have been used as the input data to predict the vibration of the automobile door with PFFEM. The frequency response functions have been measured over the surface of the door. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFFEM could be an effective tool to predict the structural vibration.

  • PDF