• Title/Summary/Keyword: Power flow analysis (PFA)

Search Result 33, Processing Time 0.026 seconds

Vibration Power Flow Analysis of Ship Structures Using SEA Parameter(Coupling Loss Factor) (SEA 파라미터(연성손실계수)를 이용한 선박의 진동 파워흐름해석)

  • Park, Young-Ho;Hong, Suk-Yoon;Park, Do-Hyun;Seo, Seong-Hoon;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.291-300
    • /
    • 2000
  • This paper proposes the new hybrid analysis of vibration in the medium to high frequency ranges including PFA and SEA concept. The core part of this method is the applications of coupling loss factor(CLF) instead of power transmission, reflection coefficients in boundary condition. This method shows very promising compared to the classical PFA for the various damping loss factors and wide ranges of frequencies. Besides this paper presents the applicable method in Power Flow Finite Element Method by forming the joint element matrix with CLF. These hybrid concepts are expected to improve SEA and PFA methods in vibration analysis.

  • PDF

Experimental Study On Power Flow Analysis of Vibration of a Coupled Plate (연성 평판 진동에 대한 파워흐름해석법의 실험적 연구)

  • Lee, G.H.;Kil, H.G.;Hwang, S.G.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.797-800
    • /
    • 2006
  • The power flow analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiment has been performed to observe the analytical characteristics of the power flow analysis of the vibration of a plate. In the experiment, the loss factor of the plate and the input mobility at a source point have been measured. The data for the loss factor has been used as the input data to predict the vibration of the plate with PFA. The frequency response functions have been measured over the surface of the plate. The comparison between the experimental results and the predicted results for the frequency responsefunctionshasbeenperformed.

  • PDF

Vibration Power Flow Analysis of Coupled co-planar Plate Structures (동일 평면상에서 연성된 평판구조물 진동의 파워흐름해석)

  • 박도현;홍석윤;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.311-318
    • /
    • 1998
  • In this paper, the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates, the wave transmission approach is introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors, we have obtained the PFA results, and compared them with the analytical exact solutions.

  • PDF

Estimation and Application of Turbulent Flow-Induced Input Power for Vibrational Power Flow Analysis (진동파워흐름해석을 위한 난류흐름에 의한 입력파워 추정 및 적용)

  • Lim, Gu-Sub;Hong, Suk-Yoon;Park, Young-Ho;Choi, Young-Dal;Joung, Tea-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.96-105
    • /
    • 2008
  • Turbulent flow-induced vibrations generate the structural fatigue and noise problems. In this paper, using Corcos, Smol' yakov-Tkachenko, Ffowcs Williams and Chase models, the input power generated by distributed fluid force is predicted for power flow analysis (PFA) of turbulent flow-induced vibration. Additionally, the Fast Fourier Transform (FFT) is used to raise the calculation efficiency PFA results obtained are compared with the classical modal solutions for verifications. Analytic results using the fluid models show good agreements with those of modal analysis, respectively.

  • PDF

Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method (3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석)

  • Kim, Sung-Hee;Hong, Suk-Yoon;Kil, Hyun-Gwon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

Vibration Power Flow Analysis of Coupled Co-planar Rectangular Plates (동일 평면상에서 연성된 직사각형 평판의 진동파워흐름해석)

  • 박도현;홍석윤;길현권
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1053-1061
    • /
    • 1998
  • In this paper. the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates. the wave transmission approach is Introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors. we have obtained the reliable PFA results. and compared them with the analytical exact solutions.

  • PDF

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • Kil, H.G.;Choi, J.S.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.301-308
    • /
    • 2000
  • The power flow analysis(PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrry direction. The energy governing equations for longitudinal, shear and flexural waves were solved to predict the vibrational energy density and intensity. The wave transmission approach was used to consider the mode conversion at the joints of the coupled plates. Numerical results for energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis (파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Lee, Sang-Young;Hwang, A-Rom;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

Experimental Study on Power Flow Analysis of Vibration of an Automobile Door (자동차 도어 진동의 파워흐름해석에 대한 실험적 연구)

  • Kil, H.G.;Lee, Y.H.;Lee, G.H.;Hwang, S.G.;Hong, S.Y.;Park, Y.H.;Seo, J.K.;Chae, G.S.;Seo, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.782-785
    • /
    • 2006
  • The Power Flow Analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency range. In this paper, Power Flow Finite Element Method (PFFEM) based on PFA has been used to predict the vibration of an automobile door. The predicted results for the frequency response function of the door have been compared with corresponding experimental results. In the experiment, the automobile door has been divided into several subsystems and the loss factor of each subsystem has been measured. The input mobility at a source point has been also measured. The data for the loss factors and the input mobility have been used as the input data to predict the vibration of the automobile door with PFFEM. The frequency response functions have been measured over the surface of the door. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFFEM could be an effective tool to predict the structural vibration.

  • PDF

Development of Noise Analysis Program by using Power Flow Analysis in Medium-to-high Frequency Ranges (파워흐름해석법을 이용한 중고주파수 대역 소음해석 프로그램 개발)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.384-390
    • /
    • 2012
  • Power Flow Analysis (PFA) is introduced for solving the noise and vibration analysis of structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C{+}{+}}$ R4 based on Power Flow Finite Element Method (PFFEM) and the noise prediction software, $NASPFA_{C{+}{+}}$ R1 based on Power Flow Boundary Element Method (PFBEM) are developed. In this paper, the coupling equation which represents relation between structural energy and acoustic energy is developed for vibro-acoustic coupling analysis. And vibro-acoustic coupling analysis software based on PFA and coupling equation is developed. Developed software is composed of translator, cavity-finder, solver and post-processor over all. Translator can translate FE model into PFADS FE model and cavity-finder can automatically make NASPFA BE model from PFADS FE model for noise analysis. The solver module calculates the structural energy density, intensity of structures, the fictitious source on the boundary and the acoustic energy density at the field in acoustic cavities. Some applications of vibro-acoustic coupling analysis software to various structures and cruise ship are shown with reliable results.