• Title/Summary/Keyword: Power feedback

Search Result 1,262, Processing Time 0.026 seconds

Multiple-Training LMS based Decision Feedback Equalizer with Soft Decision Feedback (연판정 귀환을 갖는 다중 훈련 LMS 기반의 결정 재입력 등화기)

  • Choi Yun-Seok;Park Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.473-479
    • /
    • 2005
  • A key issue toward mobile multimedia communications is to create technologies for broadband signal transmission that ran support high quality services. Such a broadband mobile communications system should be able to overcome severe distortion caused by time-varying multi-path fading channel, while providing high spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision feedback equalize. (DFE) for the single-carrier short-burst transmissions system is considered as one of the feasible solutions. For the performance improvement of the system with the short-burst format including the short training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme with soft decision feedback is proposed and its performance is investigated in mobile wireless channels throughout computer simulation.

Performance Analysis of Deep Learning Based Transmit Power Control Using SINR Information Feedback in NOMA Systems (NOMA 시스템에서 SINR 정보 피드백을 이용한 딥러닝 기반 송신 전력 제어의 성능 분석)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2021
  • In this paper, we propose a deep learning-based transmit power control scheme to maximize the sum-rates while satisfying the minimum data-rate in downlink non-orthogonal multiple access (NOMA) systems. In downlink NOMA, we consider the co-channel interference that occurs from a base station other than the cell where the user is located, and the user feeds back the signal-to-interference plus noise power ratio (SINR) information instead of channel state information to reduce system feedback overhead. Therefore, the base station controls transmit power using only SINR information. The use of implicit SINR information has the advantage of decreasing the information dimension, but has disadvantage of reducing the data-rate. In this paper, we resolve this problem with deep learning-based training methods and show that the performance of training can be improved if the dimension of deep learning inputs is effectively reduced. Through simulation, we verify that the proposed deep learning-based power control scheme improves the sum-rate while satisfying the minimum data-rate.

A Virtual RLC Active Damping Method for LCL-Type Grid-Connected Inverters

  • Geng, Yiwen;Qi, Yawen;Zheng, Pengfei;Guo, Fei;Gao, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1555-1566
    • /
    • 2018
  • Proportional capacitor-current-feedback active damping (AD) is a common damping method for the resonance of LCL-type grid-connected inverters. Proportional capacitor-current-feedback AD behaves as a virtual resistor in parallel with the capacitor. However, the existence of delay in the actual control system causes impedance in the virtual resistor. Impedance is manifested as negative resistance when the resonance frequency exceeds one-sixth of the sampling frequency ($f_s/6$). As a result, the damping effect disappears. To extend the system damping region, this study proposes a virtual resistor-inductor-capacitor (RLC) AD method. The method is implemented by feeding the filter capacitor current passing through a band-pass filter, which functions as a virtual RLC in parallel with the filter capacitor to achieve positive resistance in a wide resonance frequency range. A combination of Nyquist theory and system close-loop pole-zero diagrams is used for damping parameter design to obtain optimal damping parameters. An experiment is performed with a 10 kW grid-connected inverter. The effectiveness of the proposed AD method and the system's robustness against grid impedance variation are demonstrated.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.

Quasi-Single Stage Power Factor Correction AC/DC Converter (역률 개선을 위한 준 단일 전력단 AC/DC 컨버터)

  • Kwon, Doo-Il;Han, Sang-Kyoo;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Sug-Chin;Choi, Heung-Gyoon;Lee, Hyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.182-184
    • /
    • 2007
  • 본 논문에서는 2단 AC/DC 컨버터와 단일단 AC/DC 컨버터가 가지고 있는 단점들을 개선 할 수 있는 새로운 준 단일 전력단 컨버터를 제안한다. DC/DC 단으로는 동적 특성이 좋은 LLC 컨버터를 채용하여 별도의 제어기 없이 고정 주파수 및 고정 Duty(50%) 발생기에 의해 Open Loop로 구동 시킴으로써 저가격화 및 고효율화를 획득 할 수 있다. 또한 역률개선단은 Boost 컨버터를 채용하고 간단한 제어기 1개를 사용하여 역률 개선과 동시에 DC/DC 단의 최종출력을 제어한다. 기존 2단 PFC 컨버터와는 다르게 PFC 링크전압을 Feedback 하지 않고 DC/DC 단의 최종 출력을 Feedback 하여 제어한다. 제안된 회로의 우수성 검증을 위해 600W급 시작품을 이용한 실험 결과를 제시한다.

  • PDF

Development and validation of reactor nuclear design code CORCA-3D

  • An, Ping;Ma, Yongqiang;Xiao, Peng;Guo, Fengchen;Lu, Wei;Chai, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1721-1728
    • /
    • 2019
  • The advanced node core code CORCA-3D is one of the independent developed codes of NPIC for the nuclear reactor core design. CORCA-3D code can calculate the few-group cross section, solve the 3D diffusion equations, consider the thermal-hydraulic feedback, reconstruct the pin-by-pin power. It has lots of functions such as changing core status calculation, critical searching, control rod value calculation, coefficient calculation and so on. The main theory and functions of CORCA-3D code are introduced and validated with a lot of reactor measured data and the SCIENCE system. Now, CORCA-3D code has been applied in ACP type reactor nuclear cores design.

A Coordinative Control Strategy for Power Electronic Transformer Based Battery Energy Storage Systems

  • Sun, Yuwei;Liu, Jiaomin;Li, Yonggang;Fu, Chao;Wang, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1625-1636
    • /
    • 2017
  • A power electronic transformer (PET) based on the cascaded H-bridge (CHB) and the isolated bidirectional DC/DC converter (IBDC) is capable of accommodating a large scale battery energy storage system (BESS) in the medium-voltage grid, and is referred to as a power electronic transformer based battery energy storage system (PET-BESS). This paper investigates the PET-BESS and proposes a coordinative control strategy for it. In the proposed method, the CHB controls the power flow and the battery state-of-charge (SOC) balancing, while the IBDC maintains the dc-link voltages with feedforward implementation of the power reference and the switch status of the CHB. State-feedback and linear quadratic Riccati (LQR) methods have been adopted in the CHB to control the grid current, active power and reactive power. A hybrid PWM modulating method is utilized to achieve SOC balancing, where battery SOC sorting is involved. The feedforward path of the power reference and the CHB switch status substantially reduces the dc-link voltage fluctuations under dynamic power variations. The effectiveness of the proposed control has been verified both by simulation and experimental results. The performance of the PET-BESS under bidirectional power flow has been improved, and the battery SOC values have been adjusted to converge.

On the Outage Behavior of Interference Temperature Limited CR-MISO Channel

  • Kong, Hyung-Yun;Asaduzzaman, Asaduzzaman
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • This paper investigates the outage behavior of peak interference power limited cognitive radio (CR) networks with multiple transmit antennas. In CR-multi-input single-output (MISO) channel, the total transmit power is distributed over the transmitantennas. First, we use the orthogonal space-time codes (STC) to achieve the transmit diversity at CR-receiver (rx) and investigate the effect of the power distribution on the interference power received at the primary-receiver (P-rx). Then, we investigate the transmit antenna selection (TAS) scheme in which the CR system selects the best transmit antenna and allocates all the power to the selected best antenna. Two transmit antenna selection strategies are proposed depending on if feedback channel is available or not. We derive the closed form expressions of outage probability and outage capacity of all schemes with arbitrary number of transmit-antennas. We show that the proposed schemes significantly improve the outage capacity over the single antenna systems in Rayleigh fading environment. We also show that TAS based scheme outperforms the STC based scheme when peak interference power constraint is imposed on the P-rx only if a feedback channel from CR-rx to CR-transmitter is available.

Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel (공구강을 이용한 레이저 직접 금속조형 공정의 적층 특성)

  • 장윤상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.327-330
    • /
    • 2004
  • Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and $CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate.

  • PDF

AC and DC Applications of Induction Generator Excited by Static VAR Compensator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.169-179
    • /
    • 2004
  • This paper presents the steady-state analysis of the three-phase self-excited induction generator (SEIG). The three-phase SEIG with a squirrel cage rotor is driven by a variable-speed prime mover (VSPM) or a constant-speed prime mover (CSPM) such as a wind turbine or a micro gas turbine. Furthermore, a PI closed-loop feedback voltage regulation scheme of the three-phase SEIG driven by a VSPM on the basis of the static VAR compensator (SVC) is designed and evaluated for the stand-alone AC and DC power applications. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of its fast responses and high performances