• Title/Summary/Keyword: Power combining

Search Result 775, Processing Time 0.03 seconds

Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis (파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Lee, Sang-Young;Hwang, A-Rom;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

System-Level Analysis of Receiver Diversity in SWIPT-Enabled Cellular Networks

  • Lam, Thanh Tu;Renzo, Marco Di;Coon, Justin P.
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.926-937
    • /
    • 2016
  • In this paper, we study the feasibility of receiver diversity for application to downlink cellular networks, where low-energy devices are equipped with information decoding and energy harvesting receivers for simultaneous wireless information and power transfer. We compare several options that are based on selection combining and maximum ratio combining, which provide different implementation complexities. By capitalizing on the Frechet inequality, we shed light on the advantages and limitations of each scheme as a function of the transmission rate and harvested power that need to be fulfilled at the low-energy devices. Our analysis shows that no scheme outperforms the others for every system setup. It suggests, on the other hand, that the low-energy devices need to operate in an adaptive fashion, by choosing the receiver diversity scheme as a function of the imposed requirements. With the aid of stochastic geometry, we introduce mathematical frameworks for system-level analysis. We show that they constitute an important tool for system-level optimization and, in particular, for identifying the diversity scheme that optimizes wireless information and power transmission as a function of a sensible set of parameters. Monte Carlo simulations are used to validate our findings and to illustrate the trade-off that emerge in cellular networks with simultaneous wireless information and power transfer.

3-channel Tiled-aperture Coherent-beam-combining System Based on Target-in-the-loop Monitoring and SPGD Algorithm (목표물 신호 모니터링 및 SPGD 알고리즘 기반 3 채널 타일형 결맞음 빔결합 시스템 연구)

  • Kim, Youngchan;Yun, Youngsun;Kim, Hansol;Chang, Hanbyul;Park, Jaedeok;Choe, Yunjin;Na, Jeongkyun;Yi, Joohan;Kang, Hyungu;Yeo, Minsu;Choi, Kyuhong;Noh, Young-Chul;Jeong, Yoonchan;Lee, Hyuk-Jae;Yu, Bong-Ahn;Yeom, Dong-Il;Jun, Changsu
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • We have studied a tiled-aperture coherent-beam-combining system based on constructive interference, as a way to overcome the power limitation of a single laser. A 1-watt-level, 3-channel coherent fiber laser and a 3-channel fiber array of triangular tiling with tip-tilt function were developed. A monitoring system, phase controller, and 3-channel phase modulator formed a closed-loop control system, and the SPGD algorithm was applied. Eventually, phase-locking with a rate of 5-67 kHz and peak-intensity efficiency comparable to the ideal case of 53.3% was successfully realized. We were able to develop the essential elements for a tiled-aperture coherent-beam-combining system that had the potential for highest output power without any beam-combining components, and a multichannel coherent-beam-combining system with higher output power and high speed is anticipated in the future.

Space Diversity Combining Scheme Using Phase Difference between Main and Diversity Signals (메인과 다이버시티 신호사이 위상차를 이용한 공간 다이버시티 결합방법)

  • Jung, Gillyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.5
    • /
    • pp.44-51
    • /
    • 2015
  • The deployment of high capacity backhaul is required due to explosive growth in mobile data services. For rapid backhaul deployment, point to point microwave is a much easier and cheaper technology. The space diversity scheme is used in point to point microwave links. The purpose of space diversity is to overcome fading by combining signals from two separate receiver antennas. For signal combining algorithm, maximum power and minimum distortion methods were used and these algorithms were reported not to be good enough for robustness in selective fading. In this paper, a more practically efficient signal combining scheme from the main and diversity branch is proposed and evaluated in selective fading channel. The proposed algorithm has shown significant performance improvement in terms of signal spectrum.

A Coaxial Waveguide-based Spatial Combiner Using Finline-to-Microstrip Transitions (핀라인-마이크로스트립 변환을 이용한 동축선로 도파관 형태의 공간 결합기)

  • Kim, Bo-Ki;Lee, Su-Hyun;Kim, Hyoung-Jong;Shin, Suk-Woo;Kim, Sang-Hoon;Kim, Jae-Duk;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.79-86
    • /
    • 2011
  • In this paper, a S-band coaxial waveguide-based spatial combiner is proposed. The proposed combiner consists of coaxial waveguide, impedance transformer, and finline-to-microstrip transformer. The coaxial waveguide is used as the host of the combining circuits for higher output power and better uniformity by equally distributing the input power to each element. The finline-to-microstrip transformer is designed by using antipodal antenna, and obtained low reflection coefficient by applying the small reflection theorem. The measurement results show the coaxial waveguide combiner has a maximum combining efficiency of 95%.

High Power Amplifier using Radial Power Combiner (레디알 전력 결합기를 이용한 고출력 증폭기)

  • Choi, Jong-Un;Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.626-632
    • /
    • 2017
  • This paper describes a high power amplifier combining eight low power amplifiers using a radial power combiner with low insertion loss. The radial power combiner is a non-resonant type combiner with 8 input ports and is implemented by microstrip transmission line. The combiner characteristics designed at operating frequency of 1.045 GHz have an insertion loss of 0.7 dB and a return loss of more than 12 dB. Also, the low power amplifier used was designed with AFT27S010NT1 transistor and designed to satisfy the same gain, phase and constant output characteristic at operating frequency. The high power amplifier, which combiners the radial power combiner and the drive amplifier of 8 W output by driving low power amplifiers obtained the output characteristic of 33 W at operating frequency of 1.045 GHz. Also, the change of the output characteristic of the amplifier using the radial combiner was graceful degradation when the low power amplifier failed one by one.

Development of Wideband Spatial Combined High Power Amplifier (광대역 공간 결합 고출력 전력증폭기 개발)

  • Lee, Ho-Seon;Park, Kwan-Young;Kong, Tong-Ook;Chun, Jong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.286-297
    • /
    • 2017
  • This paper is a study of 6~18 GHz wideband high power amplifier which is composed of 10 single amplifier and coaxial type spatial power combiner. The property of this spatial power combiner is on a similar principle to antipodal antenna radiation mechanism. Therefore, the key structure of proposed spatial power combiner is the antipodal finline PCB board and the finline curve shape is numerically synthesized by using Klopfensein's optimum impedance taper. The measured CW output power of spatial combined high power amplifier is nearly 50 W. In conclusion we prove the good combining performance between the spatial power combiner and 10 single amplifier over 6~18 GHz frequency ranges. Also, we developed the key component PA and MFC MMIC which controls the phase and gain of the each amplifier, The main characteristic of MFC MMIC is to maximize combining efficiency of power amplifier.

Maximum Power Point Tracking Control of Photovoltaic System by using Current Solar Cell (태양전지 전류에 의한 계통연계형 태양광발전시스템의 최대출력 제어법)

  • 박인덕;성낙규;김대균;이승환;오봉환;김성남;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.109-112
    • /
    • 1998
  • A step down chopper and PWM current source inverter is used for the connection between the PV array and the utility. This paper proposes chopper is controlled for the dc reactor decrease and PWM current source inverter is controlled to keep the output power at the maximum point for the PV. The PV current only is measured and employed for the power calculation combining the control parameter of the PWM current source inverter.

  • PDF

High-Gain Double-Bulk Mixer in 65 nm CMOS with 830 ${\mu}W$ Power Consumption

  • Schweiger, Kurt;Zimmermann, Horst
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.457-459
    • /
    • 2010
  • A low-power down-sampling mixer in a low-power digital 65 nm CMOS technology is presented. The mixer consumes only 830 ${\mu}W$ at 1.2 V supply voltage by combining an NMOS and a PMOS mixer with cascade transistors at the output. The measured gain is (19 ${\pm}$1 dB) at frequencies between 100 MHz and 3 GHz. An IIP3 of -5.9 dBm is achieved.

Parametric Design Analysis of a Pressurized Hybrid System Combining Gas Turbine and Solid Oxide Fuel Cell (가스터빈과 고체산화물 연료전지를 결합한 가압형 하이브리드 시스템의 설계변수 해석)

  • Jeong, Young-Hyun;Kim, Tong-Seop;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1605-1612
    • /
    • 2002
  • Thermodynamic performance analysis has been carried out for a hybrid electric power generation system combining a gas turbine and a solid oxide fuel cell and operating at over-atmospheric pressure. Performance characteristics with respect to main design parameters such as maximum temperature and pressure ratio are examined in detail. Effects of other important design parameters are investigated including fuel cell internal parameters such as fuel utilization factor, steam/carbon ratio and current density, and system parameters such as recuperator efficiency and compressor inlet temperature.