• Title/Summary/Keyword: Power closed-loop control

Search Result 267, Processing Time 0.026 seconds

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.

Transient-Performance-Oriented Discrete-Time Design of Resonant Controller for Three-Phase Grid-Connected Converters

  • Song, Zhanfeng;Yu, Yun;Wang, Yaqi;Ma, Xiaohui
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.1000-1010
    • /
    • 2019
  • The use of internal-model-based linear controller, such as resonant controller, is a well-established technique for the current control of grid-connected systems. Attractive properties for resonant controllers include their two-sequence tracking ability, the simple control structure, and the reduced computational burden. However, in the case of continuous-designed resonant controller, the transient performance is inevitably degraded at a low switching frequency. Moreover, available design methods for resonant controller is not able to realize the direct design of transient performances, and the anticipated transient performance is mainly achieved through trial and error. To address these problems, the zero-order-hold (ZOH) characteristic and inherent time delay in digital control systems are considered comprehensively in the design, and a corresponding hold-equivalent discrete model of the grid-connected converter is then established. The relationship between the placement of closed-loop poles and the corresponding transient performance is comprehensively investigated to realize the direct mapping relationship between the control gain and the transient response time. For the benefit of automatic tuning and real-time adaption, analytical expressions for controller gains are derived in detail using the required transient response time and system parameters. Simulation and experimental results demonstrate the validity of the proposed method.

서유럽의 트랙터 개발 경향 (TRENDS IN TRACTOR DEVELOPMENT, WEST EUROPEAN VIEW)

  • Renius, K.Th.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.I
    • /
    • pp.31-75
    • /
    • 2000
  • The tractor is the most important machine for farming keeping probably this position also for feeding the future fast growing world population. Band width of power and functions continues to increase worldwide, examples are given. Regarding the high developed countries, general farming demands as well as precision farming issues require closed loop control principles for the system "driver-tractor-implement". Progress in information technologies supports this trend, but comprehensive component and system developments are necessary to make the tractor ready for automatic or semi-automatic controls. The following technical highlights are, for example, discussed for Europe: hydropneumatic front axle suspensions, 50 km/h top speed, front brakes, electronically controlled multivalve diesel engines, automatic hydrostatic power split CVTs, load sensing hydraulics with proportional valves, improved cab and working places with "operations by wire" and more electronics on board than ever before.

  • PDF

Initial Pole Position Estimation of Surface PM-LSM

  • Kim, Tae-Woong;Junichi Watanabe;Sumitoshi Sonoda;Junji Hirai
    • Journal of Power Electronics
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2001
  • The elimination of a pole sensor is desirable due to the low-cost requirement, the compactness, and the applied drives. This paper proposes the algorithm for the initial pole-position estimation of a surface permanent magnet linear synchronous motor (PM-LSM), which is carried out under the closed loop control without a pole sensor and is insensitive to the motor parameters. This algorithm is based on the principle that the initial pole position (IPP) is estimated by the trigonometric function of the two reference currents. The effectiveness of the proposed algorithm is confirmed by testing a surface PM-LSM with large disturbance, which result shows that IPP is well estimated within a satisfied moving-distance and a shorter estimation taken-time even if large disturbance such as cogging and friction is existed.

  • PDF

전압형 컨버터를 이용한 무효/고조파 보상을 위한 선형 제어 방법 (A SIMPLE REACTIVE/HARMONIC COMPENSATION METHOD WITH VOLTAGE TYPE CONVERTER)

  • 김효진;정승기;최재호;박민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.305-309
    • /
    • 1989
  • This paper presents a simple method to compensate reactive/harmonic current components in power lines, with voltage type current controlled converter. The method proposed differs from conventional methods in that it does not rely on explict evaluation of active power. Instead, the closed-loop control of the do link voltage of the compensator plays a major role in adjusting the compensation current. It is shown that the system can be modelled as a simple linear system, which facilitates th analytical approach to the system characteristics. The dynamic performances are examined through the digital simulation and some aspects on the controller design are discussed. Experimental results showed good agreement with the anticipate performance

  • PDF

A Study on the Prediction of Propulsive Energy Loss Related to Automatic Steering of Ships

  • Sohn, Kyoung-Ho;Lee, Gyoung-Woo;Lim, Gun;Bae, Jeong-Cheul
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1995년도 VTS and IBS 95 The Korean Institute of Navigation 1995년도
    • /
    • pp.153-165
    • /
    • 1995
  • When an automatic course-keeping is introduced as is quite popular in modern navigation the closed-loop steering system consists of autopilot device power unit(or telemotor unit) steering gear ship dynamics and magnetic or gyro compass. We derive the mathematical model of each element of the automatic steering system. We provide a method of theoretical analysis on propulsive energy loss related to automatic steering of ships inthe open seas taking account of the on-off mechanism of power unit. Also we paid attention to dead band mechanism of autopilot device which is normally called weather adjustment. Next we make numerical calculation of the effects of autopilot control constants ont he propulsive energy loss for two kinds of ship a fishing boat and an ore carrier. Realistic sea and wind disturbances are employed in the calculation.

  • PDF

고조파 상태 공간 출력임피던스에 기반한 DC-DC 부스트 컨버터의 안정도 해석 (Stability Analysis of DC-DC Boost Converters Based on Output Impedance in HSS)

  • 헤리얀토누르;박범수;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.455-456
    • /
    • 2020
  • This paper proposes stability evaluation of DC/DC boost converters based on output impedance in harmonic transfer function matrix considering line impedance and cascaded voltage and current control loops. The harmonic state-space (HSS) model of converter and controller is developed to obtain the harmonic transfer function matrix of closed-loop output impedance. This work is useful for impedance-based stability analysis of converters connected to DC power systems.

  • PDF

극저전력 무선통신을 위한 Sub-${\mu}$W 22-kHz CMOS 발진기 (A Sub-${\mu}$W 22-kHz CMOS Oscillator for Ultra Low Power Radio)

  • 나영호;김종식;김현;신현철
    • 대한전자공학회논문지SD
    • /
    • 제47권12호
    • /
    • pp.68-74
    • /
    • 2010
  • 본 논문은 Ultra-Low-Power (ULP) Radoi를 위한 Sub-${\mu}$W 급 저 전력 발진기 회로에 관한 것이다. 저 전력 발진기의 구조로서 Relaxation 구조와 Wien-Bridge 구조의 시뮬레이션 비교를 통하여, 소모 전류의 최소화 및 저 전력 동작에 최적인 Wien-Bridge 구조를 선택 하였다. Wien-Bridge 발진기 회로는 폐쇄 루프 이득이 ($1+R_2/R_1$) 인 비반전 OPAMP 증폭회로에 부귀환 경로로 RC 회로망이 접속 되어 있다. 이 회로망의 RC값과 증폭기의 폐쇄 루프 이득에 의해 발진 주파수가 정해지게 된다. 본 연구에서는 루프 이득 조정을 위해 일반적으로 사용하는 가변저항대신, MIM 커패시터와 MOS 버랙터를 조합한 가변 커패시터를 사용하여, 발진기의 폐쇄 루프 이득을 적절히 조절 하는 방식을 제안하고 이를 구현하였다. 폐쇄 루프 이득을 안정적으로 조절 할 수 있음에 따라 발진기 출력의 안정화를 얻을 수 있으며, 출력신호의 비선형성도 개선 할 수 있다. $0.18{\mu}m$ CMOS 공정을 이용해 구현된 발진기는 22 kHz 출력주파수에서 560 nA의 전류를 소모한다.

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

Modeling, Simulation and Fault Diagnosis of IPFC using PEMFC for High Power Applications

  • Darly, S.S.;Vanaja Ranjan, P.;Justus Rabi, B.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.760-765
    • /
    • 2013
  • An Interline Power Flow Controller (IPFC) is a converter based controller which compensates and balance the power flow among multi-lines within the same corridor of the multi-line subsystem. The Interline Power Flow Controller consists of a voltage source converter based Flexible AC Transmission System (FACTS) controller for series compensation. The reactive voltage injected by individual Voltage Source Converter (VSC) can be controlled to regulate active power flow in the respective line in which one VSC regulates the DC voltage, the other one controls the reactive power flows in the lines by injecting series active voltage. In this paper, a circuit model for IPFC is developed and simulation of interline power flow controller is done using the proposed circuit model. Simulation is done using MATLAB Simulink and PSPICE. The results obtained by MATLAB are compared with the results obtained by PSPICE and compared with theoretical values.