• 제목/요약/키워드: Power balancing

Search Result 527, Processing Time 0.025 seconds

An Algorithm for Even Distribution of Loss, Switching Frequency, Power of Model Predictive Control Based Cascaded H-bridge Multilevel Converter (모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘)

  • Kim, I-Gim;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.448-455
    • /
    • 2015
  • A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.

Leg-Balancing Control of the DC-link Voltage for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Lin, Jiliang
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.739-747
    • /
    • 2012
  • This paper applies carrier phase shifted pulse-width modulation (CPS-PWM) to transformerless modular multilevel converters (MMC) to improve the output spectrum. Because the MMC topology is characterized by the double-star connection of six legs consisting of cascaded modular chopper cells with floating capacitors, the balance control of the DC-link capacitor voltage is essential for safe operation. This paper presents a leg-balancing control strategy to achieve DC-link voltage balance under all operating conditions. This strategy based on circulating current decoupling control focused on DC-link balancing between the upper and lower legs in each phase pair by considering the six legs as three independent phase-pairs. Experiments are implemented on a 100-V 3-kVA downscaled prototype. The experimental results show that the proposed leg-balancing control is both effective and practical.

State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle

  • Choi, Seong-Chon;Jeon, Jin-Yong;Yeo, Tae-Jung;Kim, Young-Jae;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • This paper proposes a State-of-Charge (SOC) balancing control of Battery Power Modules (BPMs) for a modularized battery for Electric Vehicles (EVs) without additional balancing circuits. The BPMs are substituted with the single converter in EVs located between the battery and the inverter. The BPM is composed of a two-phase interleaved boost converter with battery modules. The discharge current of each battery module can be controlled individually by using the BPM to achieve a balanced state as well as increased utilization of the battery capacity. Also, an SOC balancing method is proposed to reduce the equalization time, which satisfies the regulation of a constant DC-link voltage and a demand of the output power. The proposed system and the SOC balancing method are verified through simulation and experiment.

Balancing Control of a Unicycle Robot using Ducted Fans (덕티드 팬을 이용한 외바퀴 자전거로봇의 균형 제어)

  • Lee, Jong Hyun;Shin, Hye Jung;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.895-899
    • /
    • 2014
  • This paper presents the balancing control of a unicycle robot using air power. Since the robot has one wheel to move forward and backward, the balancing control is quite challenging. To control the balancing angle, the accurate angle estimation by a tilt and a gyro sensor is required a priori. A complementary filter is implemented to eliminate the defects of two sensors and to fuse together to estimate an accurate balancing angle. The optimal design of air ducts is found empirically. Experimental studies of the balancing control of a unicycle robot confirm that the robot is well regulated without falling down.

Prediction of 2X Vibration of a Generator Rotor with Asymmetric Shaft Stiffness (비대칭 축 강성을 가지는 발전기 회전자의 2X 진동 예측)

  • Park, C.H.;Kim, Y.C.;Cho, K.G.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.16-19
    • /
    • 2007
  • The large generator rotor used in fossil power plant has the possibility of high 2X vibration due to asymmetric shaft stiffness. The generator rotor is machined into pole faces to reduce stiffness difference and then is tested through 2X vibration measurement when the balancing works are performed in the balancing shop. However, there are many cases of large difference values between 2X vibration in the balancing shop and 2X vibration in site. This paper presents a new method to estimate 2X vibration in site with more accuracy and applied for the retrofit of a fossil 400 MW class deteriorated generator. It shows that the new generator rotor is manufactured with a good 2X vibration characteristics and is operated in a low 2X vibration level although the generator rotor has high 2X vibration in the balancing shop.

  • PDF

Prediction of HVAC System Noise by Acoustic Power Balancing Method (음향파워 평형방법을 이용한 HVAC 시스템 소음예측)

  • 홍진무;최태묵;김병희;조대승;김동해
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1306-1312
    • /
    • 2001
  • In this study. the acoustic power balancing method to analysis HVAC system noise is presented. The method can consider not only forward but also backward propagations of noise generated by the operation of air supply units and aerodynamical disturbance at duct elements. This can be done by estimating sound transmission and reflection properties of duct elements. and balancing acoustic powers of total HVAC system. To verify the accuracy of the presented method. numerical analysis for a HVAC system is carried out and the results are compared with those obtained by a traditional empirical method. suggested by National Environmental Balancing Bureau.

  • PDF

Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter (결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법)

  • Shin, Yooyong;Hong, Daheon;Choi, Byungcho;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

Implementation and Balancing Control of A Single-wheel Mobile Robot Using Air Power (바람의 힘을 이용한 외바퀴 이동 로봇의 구현 및 균형제어)

  • Sim, Yong-Gi;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.139-144
    • /
    • 2014
  • This paper presents the novel design, implementation and control of a single-wheel mobile robot that can balance by using air power from ducted fans. All of the motions of the single-wheel mobile robot are actuated by air power instead of motor torques. Using air power allows to reduce the total weight of the robot. The complementary sensor fusion algorithm is introduced to estimate the angle correctly. After several design and development, the robot is tested for balancing in the roll direction and yawing motion. In addition, the balancing control of the robot on a single rope is tested to evaluate the control performance.

Study on the Fly-back Topology of New Power Feed-back Method for Active Cell Balancing (엑티브 셀 밸런싱을 위한 새로운 전력 피드백 방식의 플라이백 토폴로지에 관한 연구)

  • Seong-Yong Kang;Myeong-Jin Song;Seong-Mi Park;Sung-Jun Park;Jae-Ha Ko
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1083-1095
    • /
    • 2023
  • Recently, the demand for low-voltage, high-capacity ESS is rapidly increasing due to the revitalization of the e-mobility industry, which is mainly powered by electricity. In addition, the demand for portable power banks is rapidly increasing due to the revitalization of leisure industries such as camping and fishing. The ESS with this structure consists of a small number of series cells and many parallel cells, resulting in a system with a large rated current. Therefore, the number of power devices for cell balancing configured in series is small, but a balancing device with a large current capacity is required. Construction of a constant temperature device in such a low-voltage, high-current ESS is difficult due to economic issues. The demand for an active balancing system that can solve the passive balancing heating problem is rapidly increasing. In this paper, propose a power feedback fly-back topology that can solve the balancing heating problem. The characteristic of the proposed topology is that a series-connected voltage sharing voltage is used as the input of the flyback converter, and the converter output is connected to one transformer. In this structure, the converter output for cell voltage balancing shares magnetic flux through one high-frequency transformer, so the cell voltage connected to the converter automatically converges to the same voltage.

Power Balancing Strategy in the Microgrid During Transient (마이크로그리드 과도상태 시 전력 수급 균형 전략)

  • Seo, Jae-Jin;Lee, Hak-Ju;Jung, Won-Wook;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.