• Title/Summary/Keyword: Power angle control

Search Result 696, Processing Time 0.03 seconds

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System (가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계)

  • Kim Jae-gon;Huh Uk-youl;Kim Byung-yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Voltage Angle Control of an IPMSM for Electric Vehicle Drives (전기자동차 구동을 위한 IPMSM의 전압각 제어)

  • Ko, Tae-Hoon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.397-403
    • /
    • 2017
  • This paper studies the voltage angle control of interior permanent magnet synchronous motors (IPMSMs). For voltage angle control, the optimum voltage angle trajectory according to the operating speed is researched while the voltage and current limit conditions are considered. Through research, two different optimum voltage angle trajectories that depend on the design of IPMSMs were found. The IPMSM drive based on a voltage angle control that follows such trajectory is proposed. Unlike the conventional voltage angle control method, which is applied only in the flux-weakening region, the proposed voltage angle control can be implemented in all operation ranges from low to high speed. The proposed method is verified by experiments using a DSC controller for 800 W IPMSM.

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau, A.;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The paper deals with the control of the synchronous reluctance machine without position senser. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

Automatic Turn-off Angle Control for High Speed SRM Drives

  • Nashed Maged N.F.;Ohyama Kazuhiro;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents a new approach to the automatic control of the turn-off angle used to excite the Switched Reluctance Motor (SRM) employed in electric vehicles (EV). The controller selects the turn-off angle that supports and improves the performance of the motor drive system. This control scheme consisting of classical current control and speed control depends on a lookup table to take the best result of the motor. The turn-on angle of the main switches of the inverter is fixed at $0^{\circ}C$ and the turn-off angle is variable depending on the reference speed. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system.

HVDC System Design for AC Network Reactive Power Control (AC 계통 무효전력 제어를 위한 HVDC 시스템 설계)

  • Choi, Soon-Ho;Choi, Jang-Hum;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.8-20
    • /
    • 2013
  • This paper deals with the concept design of HVDC system for controlling AC network reactive power. HVDC system can control active power and reactive power and the control concept of reactive power is similar to SVC(Static Var Compensator). Reactive power is controlled by adjusting firing angle of HVDC system under the condition that AC filters are switched. Reactive power depends on AC voltage condition, considering the steady-state and transient state to maintain the stable operation of AC network in the viewpoint of voltage stability. Therefore, in the design stage of HVDC, the reactive power required in the AC network must be considered. For the calculation of operation angle in HVDC system, the expected reactive power demand and supply status is examined at each AC system bus. The required reactive power affects the determination of the operation angle of HVDC. That is, the range of "control deadband" of operation angle should have the capability supplying the required reactive power. Finally, the reactive power control concepts is applied to 1GW BTB Pyeongtaek-Dangjin HVDC system.

Power Quality Improvement using DVR (DVR을 이용한 전력품질 개선)

  • Kim, Seong-Hwan
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.462-466
    • /
    • 2021
  • DVR is a device that compensates for voltage fluctuations in distribution lines and is generally used in combination with a device that compensates reactive power and improve power factor. Such a coupling compensator has the disadvantage of being relatively difficult to control and bulky. In this paper, mathematical analysis of the maximum magnitude of the compensation voltage, phase angle, compensable reactive power and active power was performed in order to simultaneously compensate the reactive power and voltage fluctuation of the distribution line by applying the power angle control method of the DVR. A control algorithm for charging active power to the battery and supplying stored energy when the voltage is changed was developed and the results were confirmed through Matlab simulation.

Zero-Phase Angle Frequency Tracking Control of Wireless Power Transfer System for Electric Vehicles using Characteristics of LCCL-S Topology (LCCL-S 토폴로지 특성을 이용한 전기자동차용 무선충전시스템의 ZPA 주파수 추종 제어)

  • Byun, Jongeun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.404-411
    • /
    • 2020
  • Inductive power transfer (IPT) systems for electric vehicles generally require zero phase angle (ZPA) frequency tracking control to achieve high efficiency. Current sensors are used for ZPA frequency tracking control. However, the use of current sensors causes several problems, such as switching noise, degrading control performance, and control complexity. To solve these problems, this study proposes ZPA frequency tracking control without current sensors. Such control enables ZPA frequency tracking without real-time control and achieves stable zero voltage switching operation closed to ZPA frequency within all coupling coefficient and load ranges. The validity of the proposed control algorithm is verified on LCCL-S topology with a 3.3 kW rating IPT experimental test bed. Simulation verification is also performed.