• Title/Summary/Keyword: Power Train Shaft

Search Result 42, Processing Time 0.023 seconds

MIT PEBBLE BED REACTOR PROJECT

  • Kadak, Andrew C.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.95-102
    • /
    • 2007
  • The conceptual design of the MIT modular pebble bed reactor is described. This reactor plant is a 250 Mwth, 120 Mwe indirect cycle plant that is designed to be deployed in the near term using demonstrated helium system components. The primary system is a conventional pebble bed reactor with a dynamic central column with an outlet temperature of 900 C providing helium to an intermediate helium to helium heat exchanger (IHX). The outlet of the IHX is input to a three shaft horizontal Brayton Cycle power conversion system. The design constraint used in sizing the plant is based on a factory modularity principle which allows the plant to be assembled 'Lego' style instead of constructed piece by piece. This principle employs space frames which contain the power conversion system that permits the Lego-like modules to be shipped by truck or train to sites. This paper also describes the research that has been conducted at MIT since 1998 on fuel modeling, silver leakage from coated fuel particles, dynamic simulation, MCNP reactor physics modeling and air ingress analysis.

A Study on the Improvement of Transmission Error and Tooth Load Distribution using Micro-geometry of Compound Planetary Gear Reducer for Tractor Final Driving Shaft (트랙터 최종구동축용 복합유성기어 방식 감속기의 Micro-geometry를 이용한 전달 오차 및 치면 하중 분포 개선에 관한 연구)

  • Lee, Nam Gyu;Kim, Yong Joo;Kim, Wan Soo;Kim, Yeon Soo;Kim, Taek Jin;Baek, Seung Min;Choi, Yong;Kim, Young Keun;Choi, Il Su
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • This study was to develop a simulation model of a compound planetary gear reducer for the final driving shaft using a gear analysis software (KISSsoft, Version 2017, KISSsoft AG, Switzerland). The aim of this study is to analyze transmission error and the tooth load distribution through micro-geometry using the simulation model. The tip and root relief were modified with Micro-geometry in the profile direction, and crowning was modified with Micro-geometry in the lead direction. The transmission error was analyzed using the PPTE (Peak to Peak Transmission Error) value, and the tooth load distribution was analyzed for the concentrated stress on the tooth surface. As a result of modifying tip and relief in the profile direction, the transmission error was reduced up to 40.7%. In the case of modifying crowning in the lead direction, the tooth load was more evenly distributed than before and decreased the stress on the tooth surface. After modifying the profile direction for the 1st and 2nd planetary gear train, the bending and contact safety factors were increased by 31.7% and 17%, and 18.3% and 12.5% respectively. Moreover, the bending and safety factors after modifying lead direction were increased by 59.5% and 32.7%, respectively for the 1st planetary gear train, and 59.6% and 43.6%, respectively for the 2nd planetary gear train. In future studies, the optimal design of a compound planetary gear reducer for the final driving shaft is needed considering both the transmission error and tooth load distribution.

Experimental Investigation on Torsional Analysis and Fracture of Tripod Shaft for High-speed Train (고속열차용 트리포드 축의 비틀림 해석 및 파단에 대한 실험적 연구)

  • Lee, Joo Hong;Kim, Do Sik;Nam, Tae Yeon;Lee, Tae Young;Cho, Hae Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.979-986
    • /
    • 2016
  • The tripod shafts of constant-velocity joint are used in both the trains KTX and KTX-sanchon. It is an important component that connects the motor reduction unit and the axle reduction unit in a power bogie. The tripod shaft not only transmits drive and brake torque in the rotational direction, but also slides in the axial direction. If the drive system is loaded with an excessive torque, the fuse part of the shaft will be fractured firstly to protect the other important components. In this study, a rig was developed for conducting torsion tests on the tripod shaft, which is a type of mechanical fuse. The tripod shafts were subjected to torsional fracture test and torsional fatigue test on the rig. The weak zone of the tripod shaft was identified, and its fatigue life was predicted using finite element analysis (FEA). After analyzing the FEA results, design solutions were proposed to improve the strength and fatigue life of the tripod shaft. Furthermore, the deterioration trend and time for failure of the tripod shaft were verified using the hysteresis loops which had been changed with the advancement of the torsional fatigue test.

A Study on Fault Detection of a Turboshaft Engine Using Neural Network Method

  • Kong, Chang-Duk;Ki, Ja-Young;Lee, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.100-110
    • /
    • 2008
  • It is not easy to monitor and identify all engine faults and conditions using conventional fault detection approaches like the GPA (Gas Path Analysis) method due to the nature and complexity of the faults. This study therefore focuses on a model based diagnostic method using Neural Network algorithms proposed for fault detection on a turbo shaft engine (PW 206C) selected as the power plant for a tilt rotor type unmanned aerial vehicle (Smart UAV). The model based diagnosis should be performed by a precise performance model. However component maps for the performance model were not provided by the engine manufacturer. Therefore they were generated by a new component map generation method, namely hybrid method using system identification and genetic algorithms that identifies inversely component characteristics from limited performance deck data provided by the engine manufacturer. Performance simulations at different operating conditions were performed on the PW206C turbo shaft engine using SIMULINK. In order to train the proposed BPNN (Back Propagation Neural Network), performance data sets obtained from performance analysis results using various implanted component degradations were used. The trained NN system could reasonably detect the faulted components including the fault pattern and quantity of the study engine at various operating conditions.

High-Stiffness Structure Design of 8-Axis Multi-tasking Machine for Automotive Powertrain Shafts (자동차 파워 트레인 샤프트 가공용 8축 복합가공기의 고 강성 구조설계에 관한 연구)

  • Moon, Dong-Ju;Cho, Jun-Hyun;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2016
  • The development of an exclusive 8-axis multi-tasking machine to finish multiple cutting processes by a single piece of power equipment for securing the high-precision machining and high productivity of the series of shafts (a core part of the automotive powertrain that delivers engine power) is needed. The rigidity of the structure must be improved and the weight of the structure must be reduced to develop a multi-tasking machine with high precision and high productivity. In this paper, we perform a static structural analysis of the initial design of the multi-tasking machines and compare the results of the multi-tasking machines improved by the reinforced design and the results of the initial one. According to the results of the structural analysis, the rigidity of the reinforced machine was increased and the overall weight was decreased. Therefore, the productivity was increased.

The Characteristics of Engine Noise and its Reduction Techniques (엔진 소음, 진동 특성 및 개선방안)

  • 이재갑;여승동
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.689-700
    • /
    • 1997
  • There are many difficulties in designing the engine structure properly due to the strong conflicts between NVH characteristics and the high performance, light weight and low product cost. Many feasible noise reduction techniques should be carefully incorporated to meet such stringent noise requirements. It is also required that the engine development be carried out by introducing concurrent engineering, in which the analysis and test database are usefully applied to the detail designs from the 1st stage. This paper reviews the significance of the noise characteristics of the structure elements in relation to the combustion pressure. The mechanisms of the crank shaft rumbling, which is the main source having the bad influence on the sound quality, are also explained. The influences of dynamic behavior of engine structure on its noise are investigated, followed by discussions on experimental results of the features necessary for the design of low noise engine concepts.

  • PDF

Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility (로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Kim, Yo-Han;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Dynamic Characteristics of a Rotor-Journal Bearing System Driven by Gearboxes (기어박스로 구동되는 축-저널베어링계의 동적특성에 관한 연구)

  • 박상규
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.565-575
    • /
    • 1995
  • Gearboxes are often used in the petrochemical and electrical power plants to transmit mechanical power between two branches of a machinery train rotating at different speeds. When the gearboxes are connected with rotors supported by journal bearings, bearing loads vary in magnitude and direction with rotor speed and torque transmitted by the gearboxes. In this study, dynamic characteristics of the system which consists of gearboxes and a rotor supported by journal bearings are investigated analytically and experimentally by employing the polynomial transfer matrix method and modal analysis under different speeds and torque levels. Journal bearing loads due to the transmitted torque are claculated analytically and the stiffness and damping coefficient of the journal bearings are obtained using finite element method. Comparison of the analytical and experimental results shows that the cross coupled stiffness coefficients increase with increasing rotor speed, while the cross coupled damping coefficients decrease. This generates the oil whirl instability in the journal bearings. As the transmitted torque level goes up, the stiffness coefficients of the journal bearing and the first horizontal natural frequency increase. High levels of the transmitted torque produce high bearing stiffness since the contact loads of the mating gear teeth increase. The logarithmic decrement, which is a stability indicator, is shown to decrease with increasing speed and decreasing torque. Thus, at the low torque level, the system become unstable even at the low shaft speed.

  • PDF

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Torque Disturbance Analysis of Missile Hatch System by Spline Backlash (스플라인 백래시에 의한 유도탄 해치시스템의 토크 외란 분석)

  • Byun, Young Chul;Kang, E Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • This paper presents the experimental torque disturbance analysis of a missile hatch system by spline backlash. The missile hatch system uses a spline and gear train for vertical elevation of the heavy hatch. The spline used for the rotation shaft of the hatch is generally used for automotive driving parts that transmit high amounts of power. It has an angular backlash, which results in jerks. Backlash of the hatch spline influences hatch swinging. The spline backlash and hatch swing are experimentally analyzed by measuring the hatch's rotation angle and acceleration. Hatch swing is visually observable for a short period, and it is measured by measuring the rotation angle variation and hatch acceleration. The shape of fluctuation and duration time of hatch angle variation are similar to those of torque. This shows that the hatch swing due to spline backlash generates torque disturbances.