• Title/Summary/Keyword: Power System Voltage

Search Result 5,950, Processing Time 0.033 seconds

A Study on The Steady State Voltage Control Technique (정상상태에서의 최적전압제어 기법에 관한 연구)

  • Won, Jong-Ryul;Yoon, Yong-Beum;Yoon, Jong-Su;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.214-216
    • /
    • 1998
  • This paper presents the analysis on the voltage problems of Korea electric power system and efficient voltage control actions, when contingencies are considered. This analysis is based on the developed voltage' control techniques. It uses the reactive power-voltage nonlinear characteristics. Therefore, efficient voltage control actions can be obtained. Principal control actions of the program are mainly switched shunt capacitor and generator voltage regulating. This is tested on Korea real power system in future year.

  • PDF

Development and Installation of Voltage Management System for Voltage and Reactive Power Control of Wide Area System (광역계통 전압/무효전력 관리를 위한 전압관리시스템의 개발 및 현장설치)

  • Nam, Su-Chul;Shin, Jeong-Hoon;Baek, Seung-Mook;Lee, Jae-Gul;Moon, Seung-Pil;Kim, Tae-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1540-1548
    • /
    • 2010
  • KEPCO proposes enhanced voltage management system that is a coordinate voltage control system between the hierarchical voltage control system and the slow voltage control system. It has been installing in Jeju island. VMS consists of a master controller, CVC (Continuous Voltage Controller) and DVC (Discrete Voltage Controller). CVC consists of main controller, FDMU (Field Data Measurement Unit) and several RPDs (Reactive Power Dispatcher). CVC has a control scheme with AVRs of generator to maintain the voltage of a pilot bus in a power system, DVC has a control scheme with static reactive power sources, like a shunt capacitor, a shunt reactor, ULTC and so on, to maintain the reactive power reserve of a power system and a master controller is executed to recover reactive power margin of a power system through coordinated control between CVC and DVC.

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

A Parallel Processing Uninterruptible Power Supply for Sudden Voltage Fluctuation for Computer Applications

  • Lee, Su-Won;Ko, Sung-Hun;Lee, Seong-Ryong;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.287-289
    • /
    • 2009
  • This paper deals with a parallel processing uninterruptible power supply (UPS) for sudden voltage fluctuation in computer applications to integrate power quality improvement, load voltage stabilization and UPS. To reduce the complexity, cost and number of power conversions, which results in higher efficiency, only one voltage-controlled voltage source inverter (VCVSI) is used. The system provides sinusoidal voltage at the fundamental value of 220V/60Hz for the load during abnormal utility power conditions or grid failure. Also, the system can be operated to mitigate the harmonic current and voltage demand from nonlinear loads and provide voltage stabilization for loads when sudden voltage fluctuation occur, such as sag and swell. System operation simulation demonstrates that the system protects against outages caused by abnormal utility power conditions and sudden voltage fluctuations and changes.

  • PDF

Analysis of Voltage Regulation by DSTATCOM - Using the EMTDC Program

  • Jeon Young-Soo;Kwak No-Hong;Choo Jin-Boo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.329-334
    • /
    • 2005
  • The DSTATCOM(Distribution Static Synchronous Compensator) is one of the Custom Power Devices that can regulate voltage. The DSTATCOM operates as a shunt connected static var compensator whose capacitive or inductive output current can be controlled independent of the system voltage. The magnitude of the compensated voltage is limited by characteristics of the system and the load. Compensation capability of the DSTATCOM which can inject 1 MVAR reactive power was simulated by EMTDC under several conditions. This paper analyzes the effect of the DSTATCOM's compensation considering the length and kind of distribution line, the power factor and magnitude of the load, and the duration and magnitude of the voltage variation.

Field Implementation of Voltage Management System (VMS) into Jeju Power System in Korea

  • Shin, Jeonghoon;Nam, Suchul;Song, Jiyoung;Lee, Jaegul;Han, Sangwook;Ko, Baekkyung;An, Yongho;Kim, Taekyun;Lee, Byungjun;Baek, Seungmook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.719-728
    • /
    • 2015
  • This paper presents the results of field tests on Voltage Management System (VMS) using hybrid voltage control, which utilizes coordinated controls of various reactive power resources such as generators, FACTS and switched shunt devices to regulate the pilot bus voltage in a voltage control area. It also includes the results of performance test on RTDS-based test bed in order to validate the VMS before installing it in Jeju power system. The main purpose of the system is adequately to regulate the reactive power reserve of key generators in a normal condition with coordination of discrete shunt devices such as condensers and reactors so that the reserves can avoid voltage collapse in emergency state in Jeju system. Field tests in the automatic mode of VMS operation are included in steady-states and transient states. Finally, by the successful operation of VMS in Jeju power system, the VMS is proved to effectively control system voltage profiles in steady-state condition, increase system MVAR reserves and improve system reliability for pre- and post-contingency.

An Analysis of Delayed Voltage Recovery Phenomenon according to the Characteristics of Motor Load in Korean Power System (모터부하 특성에 따른 국내 전력계통의 전압 지연 회복 현상 분석)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.178-182
    • /
    • 2016
  • FIDVR(Fault Induced Delayed Voltage Recovery) is a phenomenon that recovery of the system voltage level delays after the fault. Cause of FIDVR phenomenon is motor load characteristic about voltage and reactive power. In low voltage condition, the motor go to stall state that consume large amount of reactive power. As a result, the voltage recovery problem is that of repeated occurrences of sustained low voltage following faults on the system. In this paper, analysis the characteristics of the motor load. And using the korean power system actual data, perform a case studies to voltage delay recovery phenomenon alleviation method. Change of each parameters by analyzing the effect on system and selecting an influence parameter. In addition, dynamic characteristic analysis of the resulting difference in the proportion by the motor load in power systems, considering the effect on the voltage stability.

Stability Control of Energy Storage Voltage Source Inverters in Isolated Power Systems

  • Hu, Jian;Fu, Lijun
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1844-1854
    • /
    • 2018
  • Isolated power systems (IPS) are often characterized by a weak grid due to small power grids. The grid side voltage is no longer equivalent to an ideal voltage source of an infinitely big power grid. The conversion control of new energy sources, parameter perturbations as well as the load itself can easily cause the system voltage to oscillate or to become unstable. To solve this problem, increasing the energy-storage power sources is usually used to improve the reliability of a system. In order to provide support for the voltage, the energy-storage power source inverter needs an method to control the voltage source. Therefore, this paper has proposed the active damping control of a voltage source inverter (VSI) based on virtual compensation. By simplifying the VSI double closed-loop control, two feedback compensation channels have been constructed to reduce the VSI output impedance without changing the characteristics of the voltage gain of a system. This improvement allows systems to operate stably in a larger range. A frequency-domain analysis, and simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

Target Operation Voltage Guidelines Considering Voltage Level in Each Voltage Control area by Applying Optimization Technique Through EMS Data Observation (EMS data 분석 및 최적화 기법을 적용한 제어지역별 목표운전전압 제안)

  • Sung, Ung;Kim, Jae-Won;Kim, Tae-Gyun;Lee, Byong-Jun;Jung, Eung-Soo;Cho, Jong-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.671-678
    • /
    • 2009
  • This paper presents target operation voltage guidelines of each voltage control area considering both voltage stability and economical efficiency in real power system. EMS(Energy Management System) data, Real-time simulator, shows not only voltage level but lots of information about real power system. Also this paper performs optimal power flow calculation of three objective functions to propose the best target operation voltage. objective function of interchange power flow maximum and active power loss minimization stand for economical efficiency index and reactive power reserve maximum objective unction represents stability index. Then through simulation result using optimazation technique, the most effective objective function is chosen. To sum up, this paper divides voltage control area into twelve considering electric distance characteristics and estimate or voltage level by the passage of time of EMS peak data. And through optimization technique target operation voltage of each voltage control area is estimated and compare heir result. Then it is proposed that the best scenario to keep up voltage stability and maximize economical efficiency in real power system.