• Title/Summary/Keyword: Power Semiconductor Devices

Search Result 527, Processing Time 0.027 seconds

High Voltage IGBT Improvement of Electrical Characteristics (고내압 IGBT의 전기적 특성 향상에 관한 연구)

  • Ahn, Byoung-Sup;Chung, Hun-Suk;Jung, Eun-Sik;Kim, Seong-Jong;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • Development of new efficient, high voltage switching devices with wide safe operating area and low on-state losses has received considerable attention in recent years. One of those structures with a very effective geometrical design is the trench gate Insulated Gate Bipolar Transistor(IGBT).power IGBT devices are optimized for high-voltage low-power design, decided to aim. Class 1,200 V NPT Planer IGBT, 1,200 V NPT Trench IGBT for class has been studied.

Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET (GaN, Cool MOS, SiC MOSFET을 이용한 DC-DC 승압 컨버터의 효율 특성)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, recent researches on new and renewable energy have been conducted due to problems such as energy exhaustion and environmental pollution, and new researches on high efficiency and high speed switching are needed. Therefore, we compared the efficiency by using high speed switching devices instead of IGBT which can't be used in high speed switching. The experiment was performed theoretically by applying the same parameters of the high speed switching devices which are the Cool MOS of Infineon Co., SiC C3M of Cree, and GaN FET device of Transform, by implementing the DC-DC boost converter and measuring the actual efficiency for output power and frequency. As a result, the GaN FET showed good efficiency at all switching frequency and output power.

  • PDF

A New Zero Voltage Transition Bridgeless PFC with Reduced Conduction Losses

  • Mahdavi, Mohammad;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.708-717
    • /
    • 2009
  • In this paper a new zero voltage transition PWM bridgeless PFC is introduced. The auxiliary circuit provides soft switching condition for all semiconductor devices. Also, in the resonant path of the auxiliary circuit, only two semiconductor devices exist. Therefore the resonant conduction losses are low. Furthermore, the auxiliary circuit semiconductor elements consist of only one diode and one switch. The proposed auxiliary circuit is applied to a bridgeless PFC converter to further reduce conduction and switching losses. In this paper, the operating modes of this converter are explained and the resulting ideal and simulation waveforms are shown. The presented experimental results justify the theoretical analysis.

Characteristics of High Power Semiconductor Device Losses in 5MW class PMSG MV Wind Turbines

  • Kwon, Gookmin;Lee, Kihyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.367-368
    • /
    • 2014
  • This paper investigates characteristics of high power semiconductor device losses in 5MW-class Permanent Magnet Synchronous Generator (PMSG) Medium Voltage (MV) wind turbines. High power semiconductor device of press-pack type IGCT of 6.5kV is considered in this paper. Analysis is performed based on neutral point clamped (NPC) 3-level back-to-back type voltage source converter (VSC) supplied from grid voltage of 4160V. This paper describes total loss distribution at worst case under inverter and rectifier operating mode for the power semiconductor switches. The loss analysis is confirmed through PLECS simulations. In addition, the loss factors due to di/dt snubber and ac input filter are presented. The investigation result shows that IGCT type semiconductor devices generate the total efficiency of 97.74% under the rated condition.

  • PDF

Comparative Analysis of Power Losses for Three-Level T-Type and NPC PWM Inverters (3-레벨 T-형 및 NPC 인버터의 전력 손실 비교 분석)

  • Alemi, Payam;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.173-183
    • /
    • 2014
  • In this paper, an analysis of power losses for the three-level T-type and neutral-point clamped (NPC) PWM inverters is presented, in which the conduction and switching losses of semiconductor devices of the inverters are taken into account. In the inverter operation, the conduction loss depends on the modulation index (MI) and power factor (PF), whereas the switching loss depends on the switching frequency. Power losses for the T-type and NPC inverters are analyzed and calculated at the different operating points of MI, PF and the switching frequency, in which the four different models of semiconductor devices are adopted. In the case of lower MI, the NPC-type is more efficient than the T-type, and vice versa. The validity of the power loss analysis has been verified by the simulation results.

A Design Method on Power Sensefet to Protect High Voltage Power Device (고전압 전력소자를 보호하기 위한 센스펫 설계방법)

  • Kyoung, Sin-Su;Seo, Jun-Ho;Kim, Yo-Han;Lee, Jong-Seok;Kang, Ey-Goo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.6-7
    • /
    • 2008
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450V power MOSFET devices by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5\times10^{14}cm^{-3}$, size of $600{\mu}m^2$ with 4.5 $\Omega$, and off-state leakage current below 50 ${\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods is meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

  • PDF

Research on High-Efficient Power Converters Using WBG Devices for Auxiliary Power Supplies (APS) System (WBG 소자를 적용한 보조전원장치의 고효율, 경량화 연구)

  • Cho, In-Ho;Lee, Jae-Bum
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.203-208
    • /
    • 2017
  • Due to global climate change issues, there is a growing demand for systems throughout the industry. In the case of power conversion, studies have been actively conducted to change the structure of the power conversion circuit and to apply new power devices. In particular, the WBG (Wide Band Gap), which is newly emerged device in the market for developing semiconductor technology, has demonstrated advantages in applying for various aspects in comparison to the existing Si (Silicon) Semiconductor. Recent research centers in the railway industry are focusing on developing technologies suitable for railway vehicles by utilizing these new developments in railway countries such as Japan and Europe. This paper researches the WBG device that is applicable to the auxiliary power supplies (APS) in railway system, and analyzes the downsizing effects to APS in high-speed railway by conducting a theoretical analysis and simulation.

Implementation of the 60W DC Characteristic Measurement System for Semiconductor Devices (60W 출력을 가지는 반도체 소자의 직류 특성 측정시스템의 구현)

  • Choi, In-Kyu; Choi, Chang;Han, Hye-Jin;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.34-37
    • /
    • 2001
  • In this paper, we designed and implemented the 60W DC characteristic measurement system for semiconductor devices. The proposed system is composed of 2 SMU(Source and Measure Unit)s, 2 HPU(High power Unit)s, 2VSU(Voltage Source Unit)s, and 2 VMU(Voltage Measurement Unit)s. HPU can source/measure voltage from -200V to 200V and source/measure current from -3A to 3A within 60W. Experimental results show that the implemented system can measure the power devices such as power BJT, regulator IC, and voltage detector.

  • PDF

Operation-Profile Based Lifetime Evaluation of Power Semiconductor Devices in Solid-State Transformer for Urban Railway Vehicles (운행 프로파일 기반 도시철도차량용 반도체 변압기의 전력 반도체 소자 수명 평가)

  • Choi, Ui-Min;Park, Jin-Hyuk;Kim, Myung-Yong;Lee, June-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2020
  • The reliability of a solid-state transformer (SST) is one of the important aspects to consider when replacing a conventional low-frequency passive transformer with SST for urban railway vehicles. Lifetime evaluation of SST in the design phase is therefore essential in guaranteeing a certain SST reliability. In this study, a lifetime evaluation of power semiconductor devices in SST is performed with respect to temperature stress. For a case study, a 3 MW SST with three kinds of power modules (one IGBT module and two SiC-MOSFET modules) is used for the lifetime estimation under the operation profile of urban railway vehicles.

A Study on the Compensation of Reactive Power by Power MOSFET INVERTER (전력용 MOSFET Inverter에 의한 무방전력보상에 관한 연구)

  • 이계호;김동필
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.163-170
    • /
    • 1987
  • It is known that reactive component of AC power in the power system gives no energy to outside and cuses enlargiment of power apparatus, voltage fluctuation and unstability of power system. The power conversion system and control system which are composed of power semiconductor devices such as tyristor, transistor, GTO and so on have been appeared as new sources of reactive power. So the cmpensation of reactive power in power semiconductor systems is one of impending problem on the point of energy conservation and inprovement of power factor. This paper treates the fundamental review of the current type power compensation system that compensates the reactive power by MOSFET inverter. This inverter detects not only the reactive power of fundamental wave but also that of all harmoics created in the power semiconductor system and is scheduled to control by sampled value.

  • PDF