• Title/Summary/Keyword: Power Semiconductor

Search Result 1,984, Processing Time 0.022 seconds

Optimization of Microalgae-Based Biodiesel Supply Chain Network Under the Uncertainty in Supplying Carbon Dioxide (이산화탄소 원료 공급의 불확실성을 고려한 미세조류 기반 바이오 디젤 공급 네트워크 최적화)

  • Ahn, Yuchan;Kim, Junghwan;Han, Jeehoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.396-407
    • /
    • 2020
  • As fossil fuels are depleted worldwide, alternative resources is required to replace fossil fuels, and biofuels are in the spotlight as alternative resources. Biofuels are produced from biomass, which is a renewable resource to produce biofuels or bio-chemicals. Especially, in order to substitute fossil fuels, the research focusing the biofuel (biodiesel) production based on CO2 and biomass achieves more attention recently. To produce biomass-based biodiesel, the development of a supply chain network is required considering the amounts of feedstocks (ex, CO2 and water) required producing biodiesel, potential locations and capacities of bio-refineries, and transportations of biodiesel produced at biorefineries to demand cities. Although many studies of the biomass-based biodiesel supply chain network are performed, there are few types of research handled the uncertainty in CO2 supply which influences the optimal strategies of microalgae-based biodiesel production. Because CO2, which is used in the production of microalgae-based biodiesel as one of important resources, is captured from the off-gases emitted in power plants, the uncertainty in CO2 supply from power plants has big impacts on the optimal configuration of the biodiesel supply chain network. Therefore, in this study, to handle those issues, we develop the two-stage stochastic model to determine the optimal strategies of the biodiesel supply chain network considering the uncertainty in CO2 supply. The goal of the proposed model is to minimize the expected total cost of the biodiesel supply chain network considering the uncertain CO2 supply as well as satisfy diesel demands at each city. This model conducted a case study satisfying 10% diesel demand in the Republic of Korea. The overall cost of the stochastic model (US$ 12.9/gallon·y) is slightly higher (23%) than that of the deterministic model (US$ 10.5/gallon·y). Fluctuations in CO2 supply (stochastic model) had a significant impact on the optimal strategies of the biodiesel supply network.

Efficient Red-Color Emission of InGaN/GaN Double Hetero-Structure Formed on Nano-Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Gong, Su-Hyeon;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.174-175
    • /
    • 2012
  • (In, Ga) N-based III-nitride semiconductor materials have been viewed as the most promising materials for the applications of blue and green light emitting devices such as light-emitting diodes (LEDs) and laser diodes. Although the InGaN alloy can have wide range of visible wavelength by changing the In composition, it is very hard to grow high quality epilayers of In-rich InGaN because of the thermal instability as well as the large lattice and thermal mismatches. In order to avoid phase separation of InGaN, various kinds of structures of InGaN have been studied. If high-quality In-rich InGaN/GaN multiple quantum well (MQW) structures are available, it is expected to achieve highly efficient phosphor-free white LEDs. In this study, we proposed a novel InGaN double hetero-structure grown on GaN nano-pyramids to generate broad-band red-color emission with high quantum efficiency. In this work, we systematically studied the optical properties of the InGaN pyramid structures. The nano-sized hexagonal pyramid structures were grown on the n-type GaN template by metalorganic chemical vapor deposition. SiNx mask was formed on the n-type GaN template with uniformly patterned circle pattern by laser holography. GaN pyramid structures were selectively grown on the opening area of mask by lateral over-growth followed by growth of InGaN/GaN double hetero-structure. The bird's eye-view scanning electron microscope (SEM) image shows that uniform hexagonal pyramid structures are well arranged. We showed that the pyramid structures have high crystal quality and the thickness of InGaN is varied along the height of pyramids via transmission electron microscope. Because the InGaN/GaN double hetero-structure was grown on the nano-pyramid GaN and on the planar GaN, simultaneously, we investigated the comparative study of the optical properties. Photoluminescence (PL) spectra of nano-pyramid sample and planar sample measured at 10 K. Although the growth condition were exactly the same for two samples, the nano-pyramid sample have much lower energy emission centered at 615 nm, compared to 438 nm for planar sample. Moreover, nano-pyramid sample shows broad-band spectrum, which is originate from structural properties of nano-pyramid structure. To study thermal activation energy and potential fluctuation, we measured PL with changing temperature from 10 K to 300 K. We also measured PL with changing the excitation power from 48 ${\mu}W$ to 48 mW. We can discriminate the origin of the broad-band spectra from the defect-related yellow luminescence of GaN by carrying out PL excitation experiments. The nano-pyramid structure provided highly efficient broad-band red-color emission for the future applications of phosphor-free white LEDs.

  • PDF

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF

Growth and electrical properties of $Sr_2$$({Ta_{1-x}},{Nb_x})_2$)$O_7$ thin films by RF sputtering (RF Sputtering을 이용한 $Sr_2$$({Ta_{1-x}},{Nb_x})_2$)$O_7$ 박막의 성장 및 전기적 특성)

  • In, Seung-Jin;Choi, Hoon-Sang;Lee, Kwan;Choi, In-Hoon
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.367-371
    • /
    • 2001
  • In this paper, theS $r_2$(T $a_{1-x}$ , N $b_{x}$)$_2$ $O_{7}$(STNO) films among ferroelectric materials having a low dielectric constant for metal-ferroelectric-semiconductor field effect transistor(MFS-FET) were discussed. The STNO thin films were deposited on p-type Si(100) at room temperature by co-sputtering with S $r_2$N $b_2$ $O_{7(SNO)}$ ceramic target and T $a_2$ $O_{5}$ ceramic target. The composition of STNO thin films was varied by adjusting the power ratios of SNO target and T $a_2$ $O_{5}$ target. The STNO films were annealed at 8$50^{\circ}C$, 90$0^{\circ}C$ and 9$50^{\circ}C$ temperature in oxygen ambient for 1 hour. The value of x has significantly influenced the structure and electrical properties of the STNO films. In the case of x= 0.4, the crystallinity of the STNO films annealed at 9$50^{\circ}C$ was observed well and the memory windows of the Pt/STNO/Si structure were 0.5-8.3 V at applied voltage of 3-9 V and leakage current density was 7.9$\times$10$_{08}$A/$\textrm{cm}^2$ at applied voltage of -5V.of -5V.V.V.

  • PDF