• Title/Summary/Keyword: Power Ripple

Search Result 1,037, Processing Time 0.03 seconds

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

The Characteristics Analysis of a PMSM with Current Angle Variations according to Stator Winding Arrangements (전류위상 변화 시 고정자 권선방법에 따른 이중 3상 영구자석 동기 전동기의 특성 해석)

  • Kim, Tae Heoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.441-445
    • /
    • 2020
  • A Permanent Magnet Synchronous Motor (PMSM) for an electrical power steering system (EPS) is adopting various dual three-phase type stator windings to get the high fault tolerance capability when the motor runs at the failure condition. In this paper, we analyze the effects of stator winding arrangements on the characteristics such as torque and efficiency of the PMSM with leading and lagging current angle variations using finite element method. As a result, the most valuable design criteria are proposed to select stator winding method. Especially, we suggest the most appropriate winding method in terms of torque and efficiency, extending constant output area and decreasing noise and torque ripples.

A Detection Method of Grid Voltage for Grid Support Operation of an Inverter-based Renewable Energy Generation System (인버터 기반 신재생 에너지 발전 시스템의 계통 지원 운전을 위한 계통 전압 검출 방법)

  • Ahn, Hyun-Chul;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.51-57
    • /
    • 2013
  • The Grid code is being strengthen as increase of renewable energy ratio. Especially, the grid connection regulations are continuously being updated for stable operation of power grids. Static grid support and Dynamic grid support must make an accurate measure at Grid connected point because they needs control algorithm individually. It has to exactly measure voltage including switching ripple at the output of the inverter generating system. In addition, it is necessary to have an accurate voltage measurement when the situation rapidly changing the grid impedance is caused by the input of serial impedance of transformer and line impedance as well as Grid Fault Device. In this paper, We propose a new detection method of grid voltage to calculate accurately the r.m.s voltage of the grid connection point along the standard required by the low voltage regulation. We verified performance through simulation grid fault device.

Air-Barrier Width Prediction of Interior Permanent Magnet Motor for Electric Vehicle Considering Fatigue Failure by Centrifugal Force

  • Kim, Sung-Jin;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.952-957
    • /
    • 2015
  • Recently, the interior permanent magnet (IPM) motors for electric vehicle (EV) traction motor are being extensively researched because of its high energy density and high efficiency. The traction motor for EV requires high power and high efficiency at the wide driving region. Therefore, it is essential to fully consider the characteristics of the motor from low speed to high-speed driving regions. Especially, when the motor is driven at high speed, a significant centrifugal force is applied to the rotor. Thus, the rotor must be stably structured and be fully endured at the critical speed. In this paper, aims to examine the characteristics of the IPM motor by adjusting the width of air-barrier according to the permanent magnet position which is critical in designing an IPM motor for EV traction motors and to conduct a centrifugal force analysis for grasping mechanical safety.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverters at low modulation index (Neutral-Point-Clamped 인버터의 저 변조지수에서 DC 링크 전압 균형을 위한 간단한 컨트롤 기법)

  • Ma C.S.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.560-564
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM(DPWM) to balance the DC-link voltage of three-level Neutral-Point-Clamped(WPC) inverters at low modulation index. New DPWM methods in multi-level inverter are also introduced. The proposed DPWM method changes the path and duration to flow the neutral point current out of or into neutral point of the DC-link and it makes the overall fluctuation of the DC-link voltage zero during a sampling time of reference voltage vector. Therefore, the voltage of the DC-link can be balanced fairly well and also the voltage ripple of the DC-link is reduced significantly. Moreover, comparing with conventional methods, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by experiment

  • PDF

A Study of Using Optimal Hysteresis Band Amplitude for Direct Torque Control of Induction Motor (유도전동기 직접토크제어의 히스테리시스 밴드 크기의 최적화에 관한 연구)

  • Jeong B.H.;Kim S.K.;Park J.K.;Oh G.K.;Cho G.B.;Baek H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.812-815
    • /
    • 2003
  • Most of all, DTC drive is very simple in its implementation because it needs only two hysteresis comparator and switching vector table for both flux and torque control. The switching strategy of a conventional direct torque control scheme which is based on hysteresis comparator results in a variable switching frequency which depends on the speed, flux, stator voltage and the hysteresis of the comparator. The amplitude of hysteresis band greatly influences on the drive performance such as flux and torque ripple and inverter switching frequency. In this paper the influence of the amplitudes of flux and torque hysteresis bands and sampling time of control program on the torque and flux ripples are investigated. Simulation results confirm the superiority of the DTC under the proposed method over the conventional DTC.

  • PDF

Analysis of the Magnetic Force and Torque of a Rotatory Two-phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.33-40
    • /
    • 2007
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced nitration due to its inherent structure. This Paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

Characteristics Comparison of PM Motor according to the Driving method (영구자석형 전동기의 구동방법에 따른 전자기적 특성 및 진동 소음 비교)

  • Hong, Jung-Pyo;Lee, Su-Jin;Kim, Do-Jin;Lee, Byeong-Hwa;Jang, Woo-Kyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.522-527
    • /
    • 2012
  • This paper presents a result of the mechanical noise and vibration analysis as well as the electrical characteristics analysis of the permanent magnet (PM) motor according to the driving method that is Brushless DC (BLDC) drive and Brushless AC (BLAC) drive. To do that, the characteristics of the PM motor, which have the same output power but different driving method, are investigated. At that time, the characteristics such as torque, torque ripple and flux density, and so on, are obtained by finite element analysis (FEA). Besides, noise and vibration are obtained by spectrum analysis. The magnetic noise is defined as noise generated from vibrations due to electromagnetic excitation force. In this paper, the electromagnetic excitation force is analyzed and design process of noise reduction is proposed. Finally, The validity of the analysis results is verified by test.

  • PDF

Comparison on the Airgap Flux Density of High-Speed Slotless Machines with Radial Magnetization and Halbach Array PM Rotor (반경방향 착자형과 Halbach 배열형 영구자석 회전자를 갖는 고속 슬롯리스 기기의 공극자속밀도 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Ryu, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.315-322
    • /
    • 2001
  • High speed brushless permanent magnet(PM) machines need a key technology to minimize the iron core losses in stator and the eddy current losses in the retained sleeve and magnets caused by slotting harmonics. Thus, slotless or iron-coreless brushless PM machines have been applied for a very high rotational speed and/or the ripple-free torque. Unfortunately, slotless or coreless PM machines have lower open-circuit field than slotted and/or iron-cored types, which cause to reduce power density. Fortunately, Halbach array can generate the strong magnetic field systems without additional magnetic materials. In this paper, the 4-pole Halbach array is applied to the high speed machine and is compared with the radial magnetized PM array in field system. The iron-/air-cored stator of PM machine is constructed with/without winding slots. Open circuit magnetic fields of each type are presented from the analytical method and finite element method. Consequently, it is confirmed that the Halbach array field system with slotless stator is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

Analysis of Joule-heat Characteristics according to the DC-link Capacitor Film Geometrics (DC-link Capacitor필름 형상에 따른 Joule-heat특성 분석)

  • Jeon, Yong Won;Kim, Young Shin;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • As global warming accelerates, eco-friendly electric cars are being developed to reduce carbon dioxide emissions, and power conversion inverters are used to drive motors. Among inverter components, DC-link capacitor is heated by high current usage, which causes problems such as performance and life-saving of inverter. Although metal cases with good thermal performance have been used to solve this problem, it is difficult to apply them in practice due to insulation problems with other parts. In this paper, the Heat-Generation influence factor of DC-link capacitor is analyzed. Variables on heat-generation are set at 3 levels for film width, inductance, and film thickness. Box-Behnken to 13 tests using the design and minimal deviations, e.g. through the experiment three times by each level. The surface of the film k type by attaching the sensor current is measured temperature. Capacitance was set to a minimum level of 200 ㎌ and had a frequency of 16 kHz with Worst case, ambient temperature of 85℃ and a ripple current of 50 Ams was applied. The temperature at the measurement point was collected in the data logger after sampling at 1 minute intervals for 2 hours after saturation with the ambient temperature. This experiment confirmed that setup factors are correlated with heat-generation.