• 제목/요약/키워드: Power Ripple

검색결과 1,035건 처리시간 0.028초

더블라인 주파수 제거를 위한 양방향 컨버터의 전력 디커플링 제어 (Power Decoupling Control of the Bidirectional Converter to Eliminate the Double Line Frequency Ripple)

  • Amin, Saghir;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.62-64
    • /
    • 2018
  • In two-stage single-phase inverters, inherent double line frequency component is present at both input and output of the front-end converter. Generally large electrolytic capacitors are required to eliminate the ripple. It is well known that the low frequency ripple shortens the lifespan of the capacitor hence the system reliability. However, the ripple can hardly be eliminated without the hardware combined with an energy storage device or a certain control algorithm. In this paper, a novel power-decoupling control method is proposed to eliminate the double line frequency ripple at the front-end converter of the DC/AC power conversion system. The proposed control algorithm is composed of two loop, ripple rejection loop and average voltage control loop and no extra hardware is required. In addition, it does not require any information from the phase-locked-loop (PLL) of the inverter and hence it is independent of the inverter control. In order to prove the validity and feasibility of the proposed algorithm a 5kW Dual Active Bridge DC/DC converter and a single-phase inverter are implemented, and experimental results are presented.

  • PDF

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

교류전동기의 주기적인 토크리플 보상알고리즘 (Compensation Algorithm for Periodic Torque Ripple of AC Motors)

  • 김병섭;최종우
    • 전력전자학회논문지
    • /
    • 제11권6호
    • /
    • pp.551-557
    • /
    • 2006
  • 교류 전동기는 전류의 측정오차와 데드타임(dead time) 등의 영향으로 전기각주파수에 동기된 주기적인 토크리플이 발생한다. 본 논문에서는 주기적인 토크리플 보상알고리즘을 제안한다. 보상기는 토크리플에 의해 생성된 속도리플의 크기을 관측하는 속도리플 관측기와 관측한 양으로 토크리플을 보상하는 토크리플 보상기로 나누어진다. 본 논문에서는 토크리플 보상기의 해석을 통해 정상상태에서 속도리플이 제거되고 새롭게 제안된 속도리플 관측기을 적용하여 성능이 향상됨을 보였다. 제안한 주기적인 토크리플 보상알고리즘에 의해 토크리플 성분이 보상됨을 모의 실험과 실험을 통해 검증하였다.

Single-Switch Buck Converter with a Ripple-Free Inductor Current

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.507-511
    • /
    • 2011
  • This paper presents a single-switch buck converter with a ripple-free inductor current. In the proposed converter, the filter inductor current ripple is completely removed by utilizing an auxiliary circuit consisting of an additional winding of the filter inductor, an auxiliary inductor, and an auxiliary capacitor. Moreover, the ripple-free current characteristic is maintained under both light load and full load conditions. The theoretical analysis and performance of the proposed converter were verified with a 110W experimental prototype operating at a 107 kHz switching frequency.

모터 토크리플에 기인하는 전동식 조향장치 시스템의 조향감 해석에 대한 연구 (A study on Analysis of Steering Feel for Electric Power Steering System Due to Motor Torque Ripple)

  • 김찬묵;한정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.785-790
    • /
    • 2011
  • This paper presents the effects of an assisting motor torque ripple on a driver's steering feeling using a simulink. The EPS(Electric Power Steering) System is modeled as a 5 degrees of freedom for simulation. To find out the influence of a torque ripple on a driver's steering feeling, which is the purpose of this study, we observed the assisting torque in various different speeds, when the torque ripple increased by 0%~40%. The torque ripple had a small but definite influence on the assisting torque, and it had a greater influence in low speeds rather than high speeds.

  • PDF

LLC 공진 컨버터의 120Hz 출력전압 리플 저감을 위한 전향보상 방법 (A Feedforward Compensation Method for 120Hz Output Voltage Ripple Reduction of LLC Resonant Converter)

  • 윤종태;이귀준
    • 전력전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.46-52
    • /
    • 2021
  • This study proposes a feedforward compensation control method to reduce 120 Hz output voltage ripple in a single-phase AC/DC rectifier system composed of PFC and LLC resonant converters. The proposed method compensates for the voltage ripple of the DC-link by using the AC input and DC output power difference, and then reduces the final output voltage ripple component of 120 Hz through feedforward compensation based on the linearized frequency gain curve of the LLC resonant converter. Through simulation and experimental results, the validity of the ripple reduction performance was verified by comparing the conventional PI controller and the proposed feedforward compensation method.

COT 제어 플라이벅 컨버터를 위한 전압 리플 보상회로의 분석 및 설계 (Analysis and Design for Ripple Generation Network Circuit in Constant-on-Time-Controlled Fly-Buck Converter)

  • 조영훈;장바울
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.106-117
    • /
    • 2022
  • Multiple output converters can be utilized when various output voltages are required in applications. Recently, one of the multiple output converters called fly-buck has been proposed, and has attracted attention due to the advantage that multiple output can be easily obtained with a simple structure. When constant on-time (COT) control is applied, the output ripple voltage must be treated carefully for control stability and voltage regulation characteristics in consideration of the inherent energy transfer characteristics of the fly-buck converter. This study analyzes the operation principle of the fly-buck converter with a ripple generation network and presents the design guideline for the improved output voltage regulation. Validity of the analysis and design guideline is verified using a 5 W prototype of the COT controlled fly-buck converter with a ripple generation network for telecommunication auxiliary power supply.

저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템 (Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement)

  • 안영주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

Analysis of the Output Ripple of the DC-DC Boost Charger for Li-Ion Batteries

  • Nguyen, Van-Sang;Tran, Van-Long;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.135-142
    • /
    • 2014
  • In the design of battery chargers, limiting the output ripple current according to the manufacturer's recommendation is important for reliable service and extended battery life. Ripple components can cause internal heating of the battery and thus reduce the service life of the battery. Care must be exerted in the design of the switching converter for the charge application through the accurate estimation of the output current ripple value. This study proposes a method to reduce the output current ripple of the converter and presents a detailed analysis of the output current ripple of the DC-DC boost converter to provide a guideline for the design of the battery charger.