• Title/Summary/Keyword: Power Response

Search Result 3,866, Processing Time 0.024 seconds

ROBUST CONTROLLER DESIGN FOR THE NUCLEAR REACTOR POWER BY EXTENDED FREQUENCY RESPONSE METHOD

  • Lee, Yoon-Joon;Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.551-560
    • /
    • 2006
  • In this study, a controller for a nuclear reactor power is designed. The reactor is modeled using the three dimensional reactor design code MASTER. From the relationship of the input and output of the reactor code, a reactor dynamic model is derived by the system identification method. This model is more realistic than the one based on mathematical theories. With this model, a robust controller is designed by the extended frequency response method. As this method has the same theoretical background as the classical method, all of the existing design techniques of the classical method can be used directly. Furthermore, by introducing the real part of a Laplacian operator into the frequency response, the control design specification can be considered at the initial stage of design. The designed controller is simple, and gives a sufficient robustness with good performance.

Analysis of Seismic Response Characteristics for Wolsong Nuclear Power Plant Structures (월성원전 구조물의 지진응답 특성 분석)

  • 허택영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.90-97
    • /
    • 1997
  • The purpose of this study is to evaluate the seismic response characteristics of Wolsong nuclear power plant (NPP) structures for the Kyeongju earthquake(ML=4.3) occurred on June 26, 1997. The seismograms are obtained from five accelerographs of nuclear power plant at Wolsong, Kyeongbuk. The distance from the epicenter is about 25km. The peak acceleration (PA) due to the earthquake is 0.0235g, which is far lower value than that of design basis earthquake(DBE). The PA at the containment wall is about twice as large as that at free field. Also, the higher the accelerograph is located in, the larger the PA is measured to be From the response spectrum analysis, the dominant frequency of the response is close to 4 Hz, which is similar to the free field is poor because of contamination by high frequency waves as a result of reflection and diffraction between ground and NPP structure. We are of opinion that the accelerograph at the free field should be moved approximately twice the building dimension away from the containment structure.

  • PDF

Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component (스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가)

  • 최인길;서정문;전영선;이종림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

Field measurement of damping in industrial chimneys and towers

  • Cho, K.P.;Tamura, Y.;Itoh, T.;Narikawa, M.;Uchikawa, Y.;Nishimura, I.;Ohshima, Y.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2001
  • In the design of industrial chimneys and towers, structural engineers must assume a level of the inherent damping in the structures. In order to better estimate the dynamic response of those structures, actual damping was measured from wind-induced vibration signals of chimneys and towers and its characteristics with respect to the response levels, the structural systems, and the wind direction were discussed. Damping ratio and natural frequency for three chimneys and two towers were calculated using random decrement technique.

A Study on the Frequency Bias Setting of the AGC based on Frequency Response in Korea (전력계통 주파수응답 실적 기반의 국내 AGC 주파수 바이어스 설정치 산정에 관한 연구)

  • Kang, Bo-Ram;Kwon, Han-Na;Kook, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.978-983
    • /
    • 2015
  • This paper presents Frequency Bias setting for the adequate AGC(Automatic Generator Control) operation based on the frequency response of power system in Korea. AGC frequency control recovers the frequency up to 60Hz following a primary control when the frequency suddenly drops due to a fault in power system. AGC can compensate an appropriate amount of generation by calculating ACE(Are Control Error) from the frequency deviation with the AGC frequency bias set from the actual frequency response in power systems. An appropriateness of the proposed AGC bias setting is verified through case studies employing the simulation model.

Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics - (전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 -)

  • Oh Kwang-Hae;Lee Chang-Mu
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.493-498
    • /
    • 2003
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. For these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I ). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II

  • PDF

Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics - (전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 -)

  • 오광해;이장무
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. for these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II.

The Clinical Experiences of Laser Therapy of Patients with Pain (치료용 레이저를 이용한 통증치료 경험(II))

  • Chae, Ki-Young
    • The Korean Journal of Pain
    • /
    • v.4 no.2
    • /
    • pp.142-146
    • /
    • 1991
  • One hundred twenty patients with acute and chronic pain treated by a low power laser were divided into several groups by their pathology and evaluated according to their response rate to laser therapy through a follow-up study. 1) The ages of the patients were between the early twenties and late forties (71.7%), and there was no differences between sexes. 2) The spinal pathology group was the most common(52.5%) and the articular pathology group occupied next (14.2%). 3) The average duration of Laser therapy was about 20 days and response to the therapy appeared about the eighth day. 4) The response to the therapy in the spinal pathology group appeared about the eighth day and the average duration of therapy was about 18 days. 5) The response to the therapy in the articular pathology group appeared about the eighth day and the average duration of therapy was about 28 days. 6) The response rate of the spinal pathology group was 81.0%, and remarkable symptom relief was noted when compaired to a 58.7% response rate in the control group, 7) The response rate of the articular pathology group was 82.4%, which was similar to the control group. 8) The response rate of the miscellaneous group was 87.0%, and remarkable symptom relief was noted when compaired to a 66.7A response rate in the control group. 9) The mean response rate of all patients treated by a low power laser was 82.5% and that of the control group was 70.5%. Laser therary proved to be an effective treatment modality for acute and chronic pain.

  • PDF

Assessment of the Generators Constant from Frequency Response Properties of Korean Power System (우리나라 계통의 주파수응답특성에 의한 발전기정수 산정에 관한 연구)

  • Jeong, Bong-Sang;Chun, Yeong-Han;Kim, Il-Dong;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.688-693
    • /
    • 2009
  • The response characteristics of power system frequency are determined by generator droop characteristics and load damping properties. The characteristics of governor droops are termed by generators constant, while those of load damping by load constant. In this paper, the generator constant and the load constant are assessed by measured data at the event of generator trips.