• Title/Summary/Keyword: Power Resource Allocation

Search Result 249, Processing Time 0.023 seconds

Resource allocation algorithm for space-based LEO satellite network based on satellite association

  • Baochao Liu;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1638-1658
    • /
    • 2024
  • As a crucial development direction for the sixth generation of mobile communication networks (6G), Low Earth Orbit (LEO) satellite networks exhibit characteristics such as low latency, seamless coverage, and high bandwidth. However, the frequent changes in the topology of LEO satellite networks complicate communication between satellites, and satellite power resources are limited. To fully utilize resources on satellites, it is essential to determine the association between satellites before power allocation. To effectively address the satellite association problem in LEO satellite networks, this paper proposes a satellite association-based resource allocation algorithm. The algorithm comprehensively considers the throughput of the satellite network and the fairness associated with satellite correlation. It formulates an objective function with logarithmic utility by taking the logarithm and summing the satellite channel capacities. This aims to maximize the sum of logarithmic utility while promoting the selection of fewer associated satellites for forwarding satellites, thereby enhancing the fairness of satellite association. The problems of satellite association and power allocation are solved under constraints on resources and transmission rates, maximizing the logarithmic utility function. The paper employs an improved Kuhn-Munkres (KM) algorithm to solve the satellite association problem and determine the correlation between satellites. Based on the satellite association results, the paper uses the Lagrangian dual method to solve the power allocation problem. Simulation results demonstrate that the proposed algorithm enhances the fairness of satellite association, optimizes resource utilization, and effectively improves the throughput of LEO satellite networks.

Challenges and Issues of Resource Allocation Techniques in Cloud Computing

  • Abid, Adnan;Manzoor, Muhammad Faraz;Farooq, Muhammad Shoaib;Farooq, Uzma;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2815-2839
    • /
    • 2020
  • In a cloud computing paradigm, allocation of various virtualized ICT resources is a complex problem due to the presence of heterogeneous application (MapReduce, content delivery and networks web applications) workloads having contentious allocation requirements in terms of ICT resource capacities (resource utilization, execution time, response time, etc.). This task of resource allocation becomes more challenging due to finite available resources and increasing consumer demands. Therefore, many unique models and techniques have been proposed to allocate resources efficiently. However, there is no published research available in this domain that clearly address this research problem and provides research taxonomy for classification of resource allocation techniques including strategic, target resources, optimization, scheduling and power. Hence, the main aim of this paper is to identify open challenges faced by the cloud service provider related to allocation of resource such as servers, storage and networks in cloud computing. More than 70 articles, between year 2007 and 2020, related to resource allocation in cloud computing have been shortlisted through a structured mechanism and are reviewed under clearly defined objectives. Lastly, the evolution of research in resource allocation techniques has also been discussed along with salient future directions in this area.

A Low Poorer Resource Allocation Algorithm Based on Minimizing Switching Activity (스위칭 동작 최소화를 통한 저 전력 자원할당 알고리즘)

  • 신무경;인치호;김희석
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.121-124
    • /
    • 2001
  • This paper proposed resource allocation algorithm for the minimum switching activity of functional unit in high level synthesis process as like DSP which is circuit to give many functional unit. The resource allocation method after scheduling use the power function calculating average hamming distance and switching activity of the between two input. First of all, the switching activity is calculated by the input value after calculating the average hamming distance between operation. In this paper, the proposed method though high If level simulation find switching activity in circuit each functional unit exchange for binary sequence length and value bit are logic one value. To use the switching activity find the allocation with minimal power consumption, the proposed method visits all control steps one by one and determines the allocation with minimal power consumption at each control step. As the existing method, the execution time can be fast according to use the number of operator and max control step. And it is the reduction effect from 6% to 8%.

  • PDF

Consensus-Based Distributed Algorithm for Optimal Resource Allocation of Power Network under Supply-Demand Imbalance (수급 불균형을 고려한 전력망의 최적 자원 할당을 위한 일치 기반의 분산 알고리즘)

  • Young-Hun, Lim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.440-448
    • /
    • 2022
  • Recently, due to the introduction of distributed energy resources, the optimal resource allocation problem of the power network is more and more important, and the distributed resource allocation method is required to process huge amount of data in large-scale power networks. In the optimal resource allocation problem, many studies have been conducted on the case when the supply-demand balance is satisfied due to the limitation of the generation capacity of each generator, but the studies considering the supply-demand imbalance, that total demand exceeds the maximum generation capacity, have rarely been considered. In this paper, we propose the consensus-based distributed algorithm for the optimal resource allocation of power network considering the supply-demand imbalance condition as well as the supply-demand balance condition. The proposed distributed algorithm is designed to allocate the optimal resources when the supply-demand balance condition is satisfied, and to measure the amount of required resources when the supply-demand is imbalanced. Finally, we conduct the simulations to verify the performance of the proposed algorithm.

Resouce Allocation for Multiuser OFDM Systems (다중사용자 OFDM 광대역 무선인터넷 시스템의 자원할당 방법)

  • Chung, Yong-Joo;Paik, Chun-Hyun;Kim, Hu-Gon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.33-46
    • /
    • 2007
  • This study deals with the adaptive multiuser OFDM (Orthogonal Frequency Division Multiplexing) system which adjusts the resource allocation according to the environmental changes in such as wireless and quality of service required by users. The resource allocation includes subcarrier assignment to users, modulation method and power used for subcarriers. We first develop a general optimization model which maximizes data throughput while satisfying data rates required by users and total power constraints. Based on the property that this problem has the 0 duality gap, we apply the subgradient dual optimization method which obtains the solution of the dual problem by iteration of simple calculations. Extensive experiments with realistic data have shown that the subgradient dual method is applicable to the real world system, and can be used as a dynamic resource allocation mechanism.

Resource Allocation based on Hybrid Sharing Mode for Heterogeneous Services of Cognitive Radio OFDM Systems

  • Lei, Qun;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique for improving the efficiency of radio spectrum. Unlike existing works in the literature, where only one secondary user (SU) uses overlay and underlay modes, the different transmission modes should be allocated to different SUs, according to their different quality of services (QoS), to achieve the maximal efficiency of radio spectrum. However, hybrid sharing mode allocation for heterogeneous services is still a challenge in CRNs. In this paper, we propose a new resource allocation method for hybrid sharing transmission mode of overlay and underlay (HySOU), to achieve more potential resources for SUs to access the spectrum without interfering with the primary users. We formulate the HySOU resource allocation as a mixed-integer programming problem to optimize the total system throughput, satisfying heterogeneous QoS. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with a simultaneous fairness guarantee, and the achieved HySOU diversity gain is a satisfactory improvement.

Block-Level Resource Allocation with Limited Feedback in Multicell Cellular Networks

  • Yu, Jian;Yin, Changchuan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.420-428
    • /
    • 2016
  • In this paper, we investigate the scheduling and power allocation for coordinated multi-point transmission in downlink long term evolution advanced (LTE-A) systems, where orthogonal frequency division multiple-access is used. The proposed scheme jointly optimizes user selection, power allocation, and modulation and coding scheme (MCS) selection to maximize the weighted sum throughput with fairness consideration. Considering practical constraints in LTE-A systems, the MCSs for the resource blocks assigned to the same user need to be the same. Since the optimization problem is a combinatorial and non-convex one with high complexity, a low-complexity algorithm is proposed by separating the user selection and power allocation into two subproblems. To further simplify the optimization problem for power allocation, the instantaneous signal-to-interference-plus-noise ratio (SINR) and the average SINR are adopted to allocate power in a single cell and multiple coordinated cells, respectively. Simulation results show that the proposed scheme can improve the average system throughput and the cell-edge user throughput significantly compared with the existing schemes with limited feedback.

On-demand Allocation of Multiple Mutual-compensating Resources in Wireless Downlinks: a Multi-server Case

  • Han, Han;Xu, Yuhua;Huang, Qinfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.921-940
    • /
    • 2015
  • In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.

Resource Allocation Scheme for Public Safety Communications with High-Power User Equipment (재난안전통신 환경에서 고출력 단말의 자원할당 기법)

  • Nam, Jong-Hyun;Shin, Oh-Soon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • In this paper, we propose a resource allocation scheme for high-power user equipment (HPUE) in public safety communication environments. The use of HPUE is being considered to increase the throughput and communication range of a UE in the disaster area where normal communication links are not available. However, HPUE may cause higher interference to UE's in adjacent cells that are allocated to the same radio resources. Therefore, it is necessary to deal with the potential interference through frequency planning and resource allocation. The performance of the proposed resource allocation scheme is evaluated through simulations in 3GPP public safety communication scenarios.

Resource scheduling scheme for 5G mmWave CP-OFDM based wireless networks with delay and power allocation optimizations

  • Marcus Vinicius G. Ferreira;Flavio H. T. Vieira;Alisson A. Cardoso
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • In this paper, to optimize the average delay and power allocation (PA) for system users, we propose a resource scheduling scheme for wireless networks based on Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) according to the first fifth-generation standards. For delay minimization, we solve a throughput maximization problem that considers CPOFDM systems with carrier aggregation (CA). Regarding PA, we consider an approach that involves maximizing goodput using an effective signal-to-noise ratio. An algorithm for jointly solving delay minimization through computation of required user rates and optimizing the power allocated to users is proposed to compose the resource allocation approach. In wireless network simulations, we consider a scenario with the following capabilities: CA, 256-Quadrature Amplitude Modulation, millimeter waves above 6 GHz, and a radio frame structure with 120 KHz spacing between the subcarriers. The performance of the proposed resource allocation algorithm is evaluated and compared with those of other algorithms from the literature using computational simulations in terms of various Quality of Service parameters, such as the throughput, delay, fairness index, and loss rate.