• Title/Summary/Keyword: Power Resource Allocation

Search Result 249, Processing Time 0.023 seconds

A Cloud-Edge Collaborative Computing Task Scheduling and Resource Allocation Algorithm for Energy Internet Environment

  • Song, Xin;Wang, Yue;Xie, Zhigang;Xia, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2282-2303
    • /
    • 2021
  • To solve the problems of heavy computing load and system transmission pressure in energy internet (EI), we establish a three-tier cloud-edge integrated EI network based on a cloud-edge collaborative computing to achieve the tradeoff between energy consumption and the system delay. A joint optimization problem for resource allocation and task offloading in the threetier cloud-edge integrated EI network is formulated to minimize the total system cost under the constraints of the task scheduling binary variables of each sensor node, the maximum uplink transmit power of each sensor node, the limited computation capability of the sensor node and the maximum computation resource of each edge server, which is a Mixed Integer Non-linear Programming (MINLP) problem. To solve the problem, we propose a joint task offloading and resource allocation algorithm (JTOARA), which is decomposed into three subproblems including the uplink transmission power allocation sub-problem, the computation resource allocation sub-problem, and the offloading scheme selection subproblem. Then, the power allocation of each sensor node is achieved by bisection search algorithm, which has a fast convergence. While the computation resource allocation is derived by line optimization method and convex optimization theory. Finally, to achieve the optimal task offloading, we propose a cloud-edge collaborative computation offloading schemes based on game theory and prove the existence of Nash Equilibrium. The simulation results demonstrate that our proposed algorithm can improve output performance as comparing with the conventional algorithms, and its performance is close to the that of the enumerative algorithm.

Resource Allocation with Proportional Rate In Cognitive Wireless Network: An Immune Clonal Optimization Scheme

  • Chai, Zheng-Yi;Zhang, De-Xian;Zhu, Si-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1286-1302
    • /
    • 2012
  • In this paper, the resource allocation problem with proportional fairness rate in cognitive OFDM-based wireless network is studied. It aims to maximize the total system throughput subject to constraints that include total transmit power for secondary users, maximum tolerable interferences of primary users, bit error rate, and proportional fairness rate among secondary users. It is a nonlinear optimization problem, for which obtaining the optimal solution is known to be NP-hard. An efficient bio-inspired suboptimal algorithm called immune clonal optimization is proposed to solve the resource allocation problem in two steps. That is, subcarriers are firstly allocated to secondary users assuming equal power assignment and then the power allocation is performed with an improved immune clonal algorithm. Suitable immune operators such as matrix encoding and adaptive mutation are designed for resource allocation problem. Simulation results show that the proposed algorithm achieves near-optimal throughput and more satisfying proportional fairness rate among secondary users with lower computational complexity.

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

Resource and Power Allocation Method for Device-to-Device Communications in a Multicell Network (다중 셀 네트워크에서 단말 간 직접 통신을 위한 자원 및 전력 할당 기법)

  • Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1986-1993
    • /
    • 2015
  • We investigate the optimal resource and power allocation for device-to-device (D2D) communications in a multicell environment. When D2D links reuse the cellular radio resources, each D2D user will interfere with a cellular link and other D2D links, in its own cell as well as in adjacent cells. Under such situation, we propose a coordinated resource allocation scheme that can handle the intercell interferences as well as the intracell interference. For a given resource allocation, we also formulate a power optimization problem and present an algorithm for finding the optimal solution. The resource and power allocation algorithms are designed to maximize the achievable rate of the D2D link, while limiting the generated interference to the cellular link. The performance of the proposed algorithms is evaluated through simulations in a multicell environment. Numerical results are presented to verify the coordination gain in the resource and power allocation.

Sequential Optimization for Subcarrier Pairing and Power Allocation in CP-SC Cognitive Relay Systems

  • Liu, Hongwu;Jung, Jaijin;Kwak, Kyung Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1638-1653
    • /
    • 2014
  • A sequential optimization algorithm (SOA) for resource allocation in a cyclic-prefixed single-carrier cognitive relay system is proposed in this study. Both subcarrier pairing (SP) and power allocation are performed subject to a primary user interference constraint to minimize the mean squared error of frequency-domain equalization at the secondary destination receiver. Under uniform power allocation at the secondary source and optimal power allocation at the secondary relay, the ordered SP is proven to be asymptotically optimal in maximizing the matched filter bound on the signal-to-interference-plus-noise ratio. SOA implements the ordered SP before power allocation optimization by decoupling the ordered SP from the power allocation. Simulation results show that SOA can optimize resource allocation efficiently by significantly reducing complexity.

Interference-Aware Radio Resource Allocation in D2D Underlaying LTE-Advanced Networks

  • Xu, Shaoyi;Kwak, Kyung Sup;Rao, Ramesh R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2626-2646
    • /
    • 2014
  • This study presents a power and Physical Resource Blocks (PRBs) joint allocation algorithm to coordinate uplink (UL) interference in the device-to-device (D2D) underlaying Long Term Evolution-Advanced (LTE-A) networks. The objective is to find a mechanism to mitigate the UL interference between the two subsystems and maximize the weighted sum throughput as well. This optimization problem is formulated as a mixed integer nonlinear programming (MINLP) which is further decomposed into PRBs assignment and transmission power allocation. Specifically, the scenario of applying imperfect channel state information (CSI) is also taken into account in our study. Analysis reveals that the proposed PRBs allocation strategy is energy efficient and it suppresses the interference not only suffered by the LTE-A system but also to the D2D users. In another side, a low-complexity technique is proposed to obtain the optimal power allocation which resides in one of at most three feasible power vectors. Simulations show that the optimal power allocation combined with the proposed PRBs assignment achieves a higher weighted sum throughput as compared to traditional algorithms even when imperfect CSI is utilized.

Efficient Resource Allocation with Multiple Practical Constraints in OFDM-based Cooperative Cognitive Radio Networks

  • Yang, Xuezhou;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2350-2364
    • /
    • 2014
  • This paper addresses the problem of resource allocation in amplify-and-forward (AF) relayed OFDM based cognitive radio networks (CRNs). The purpose of resource allocation is to maximize the overall throughput, while satisfying the constraints on the individual power and the interference induced to the primary users (PUs). Additionally, different from the conventional resource allocation problem, the rate-guarantee constraints of the subcarriers are considered. We formulate the problem as a mixed integer programming task and adopt the dual decomposition technique to obtain an asymptotically optimal power allocation, subcarrier pairing and relay selection. Moreover, we further design a suboptimal algorithm that sacrifices little on performance but could significantly reduce computational complexity. Numerical simulation results confirm the optimality of the proposed algorithms and demonstrate the impact of the different constraints.

A New Resource Allocation Algorithm for Low Power Architecture (저 전력 아키텍처 설계를 위한 새로운 자원할당 알고리즘)

  • 신무경;인치호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.329-332
    • /
    • 2000
  • This paper proposed resource allocation algorithm for the minimum power consumption of functional unit in high level synthesis process as like DSP which is circuit to give many functional unit. In this paper, the proposed method though high level simulation find switching activity in circuit each functional unit exchange for binary sequence length and value bit are logic one value. To used the switching activity find the allocation with minimal power consumption, the proposed method visits all control steps one by one and determines the allocation with minimal power consumption at each control step.

  • PDF

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.

Resource Allocation based on Quantized Feedback for TDMA Wireless Mesh Networks

  • Xu, Lei;Tang, Zhen-Min;Li, Ya-Ping;Yang, Yu-Wang;Lan, Shao-Hua;Lv, Tong-Ming
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.160-167
    • /
    • 2013
  • Resource allocation based on quantized feedback plays a critical role in wireless mesh networks with a time division multiple access (TDMA) physical layer. In this study, a resource allocation problem was formulated based on quantized feedback for TDMA wireless mesh networks that minimize the total transmission power. Three steps were taken to solve the optimization problem. In the first step, the codebook of the power, rate and equivalent channel quantization threshold was designed. In the second step, the timeslot allocation criterion was deduced using the primal-dual method. In the third step, a resource allocation scheme was developed based on quantized feedback using the stochastic optimization tool. The simulation results show that the proposed scheme not only reduces the total transmission power, but also has the advantage of quantized feedback.

  • PDF