• Title/Summary/Keyword: Power Reduction

Search Result 198, Processing Time 0.524 seconds

Image Independent Driving Power Reduction for High Frame Rate LCD Televisions

  • Nam, Hyoung-Sik;Shim, Jae-Hoon
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.470-473
    • /
    • 2012
  • In this letter, the constant driving power reduction ratio has been achieved for column drivers regardless of the input image by incorporating a new static power reduction scheme into the previous dynamic power reduction method. The measured power reduction ratio is around 50% for a 120 Hz liquid crystal display panel in such cases of still input video and fallback.

A Development of Module Operating on Standby-power Reduction for PLC Control Modem (제어용 PLC 모뎀을 위한 대기전력 절감 모듈 개발)

  • Kim, Kl-Hyun;Kim, Ji-Hong;Kim, Nam-Kyun;Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.296-299
    • /
    • 2004
  • This paper introduces a supplementary module reducing tile standby-power of Power Line Communication(PLC) modem, one of the network equipments that take up much of tile stand-by power. This supplementary module consists of three parts, such as a compare part, a control part, and a switch part. This supplementary module controls the power going from the power supply element into PLC modem, which brings about the effect of standby-power reduction. It is assured that over 30% standby-power reduction is estimated when we applied this module to a low-speedy PLC control modem.

  • PDF

A Development of Module Operating on Standby-power Reduction for Low-speedy PLC Modem (저속 PLC 모뎀을 위한 대기전력 절감 모듈 개발)

  • Kim Ki-Hyun;Kim Ji-Hong;Kim Nam-Kyun;Kim Sang-Cheol;Seo Kil-Soo;Kim Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1537-1539
    • /
    • 2004
  • This paper introduces a supplementary module reducing the standby-power of Power Line Communication(PLC) modem, one of the network equipments that take up much of the stand-by power. This supplementary module consists of three parts, such as a compare part, a control part, and a switch part. This supplementary module controls the power going from the power supply element into PLC modem, which brings about the effect of standby-power reduction. It is assured that over $30\%$ standby-power reduction is estimated when we applied this module to a low-speedy PLC control modem.

  • PDF

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF

Low Power Consumption Technology for Mobile Display

  • Lee, Joo-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.402-403
    • /
    • 2009
  • A variety of power reduction technologies is introduced and the benefits of the technologies are discussed. PenTile$^{(R)}$ DBLC (Dynamic Brightness LED Control) combined with SABC (Sensor-Based Adaptive Brightness Control) enables to achieve the average LED power consumption to one third. The panel power reduction of 25% can be achieved with low power driving technology, ALS (Active Level Shifter). MIP (Memory In Pixel) is expected to be useful in transflective display because the whole display area can be utilized in reflective mode with power consumption of 1mW.

  • PDF

Standby Power Reduction Technique due to the Minimization of voltage difference between input and output in AC 60Hz (대기전력 최소화를 위한 교류전압 입력에 따른 저전압 구동회로 설계)

  • Seo, Kil-Soo;Kim, Ki-Hyun;Kim, Hyung-Woo;Lee, Kyung-Ho;Kim, Jong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1018-1019
    • /
    • 2015
  • Recently, standby power reduction techniques of AC/DC adaptor were developed, consuming power almost arrived to 300mW level. The standby power losses are composed of the input filter loss 11.8mW, the control IC for AC/DC adaptor 18mW, the switching loss 9.53mW and the feedback loss 123mW. And there are the standby power reduction techniques. In this paper, in order to reduce the standby power of SMPS more, the loss due to a voltage difference between input and output is reduced by the control circuit which is composed of the low voltage driving circuit and voltage regulator. The low voltage driving circuit operates on the low voltage of input and off the high voltage. The low voltage driving IC was produced by the $1.0{\mu}m$, high voltage DMOS process.

  • PDF

A Study on Simultaneous Load Factor of Intelligent Electric Power Reduction System in Korea (한국의 지능형 전력동시부하율 저감시스템에 관한 연구)

  • Kim, Tae-Sung;Lee, Jong-Hwan
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • This study is designed to predict the overall electric power load, to apply the method of time sharing and to reduce simultaneous load factor of electric power when authorized by user entering demand plans and using schedules into the user's interface for a certain period of time. This is about smart grid, which reduces electric power load through simultaneous load factor of electric power reduction system supervision agent. Also, this study has the following characteristics. First, it is the user interface which enables authorized users to enter and send/receive such data as demand plan and using schedule for a certain period of time. Second, it is the database server, which collects, classifies, analyzes, saves and manages demand forecast data for a certain period of time. Third, is the simultaneous load factor of electric power control agent, which controls usage of electric power by getting control signal, which is intended to reduce the simultaneous load factor of electric power by the use of the time sharing control system, form the user interface, which also integrate and compare the data which were gained from the interface and the demand forecast data of the certain period of time.

Concept Development of Core Protection Calculator with Trip Avoidance Function using Systems Engineering

  • Nascimento, Thiago;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.47-58
    • /
    • 2020
  • Most of the reactor trips in Korean NPPs related to core protection systems were caused not because of proximity of boiling crisis and, consequently, a damage in the core, but due to particular miscalculations or component failures related to the core protection system. The most common core protection system applied in Korean NPPs is the Core Protection Calculator System (CPCS), which is installed in OPR1000 and APR1400 plants. It generates a trip signal to scram the reactor in case of low Departure from Nucleate Boiling Ratio (DNBR) or high Local Power Density (LPD). However, is a reactor trip necessary to protect the core? Or could a fast power reduction be enough to recover the DNBR/LPD without a scram? In order to analyze the online calculation of DNBR/LPD, and the use of fast power reduction as trip avoidance methodology, a concept of CPCS with fast power reduction function was developed in Matlab® Simulink using systems engineering approach. The system was validated with maximum of 0.2% deviation from the reference and the dynamic deviation was maximum of 12.65% for DNBR and 6.72% for LPD during a transient of 16,000 seconds.

The Maximum Demand Power Reduction of Small Industrial Factory based on Microgrid (마이크로그리드를 기반으로 한 중소 산업용수용가의 최대수요전력 저감방안)

  • Chang, Hong-Soon;Kim, Cherl-Jin;Park, Sang-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • Recently, the power consumption of industrial consumer has increased rapidly, causing problems such as lack of power reserve margin in summer and winter, and therefore there is a growing need for maximum demand power management to consumers. In this paper, we studied small microgrid system consisting of battery ESS and photovoltaic power system, applied to small and medium sized factories to reduce the maximum demand power of daily industrial power load. To verify the validity of the study, we simulated a small microgrid system using Matlab/Simulink software. As a result of applying the simulation to small and medium sized plants that consume a lot of power, it is confirmed that there is a 13% reduction in demand compared to the existing maximum demand power. This result is expected to contribute to the improvement of the power reserve margin.