• Title/Summary/Keyword: Power Mode

Search Result 4,686, Processing Time 0.029 seconds

Development of CVTs Composed of a 2K-H I Type Differential Gear Unit and a V-belt Drive (2K-H형 I 형식 차동기어장치와 V-belt 전동장치를 결합한 무단변속기의 개발)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1060-1068
    • /
    • 2002
  • Compound continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are composed of a 2K-H I type differential gear unit, a V-belt type continuously variable unit(CVU), a few friction clutches and gears, and not required of a starting device as a torque converter. Compound CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and efficiency are executed and proven by experimental studies.

A Study on the Performance of Continuously Variable Transmission composed of V-belt Drive and 2K-H type Differential Gear Unit (2K-H형 차동기어장치와 V-belt를 결합한 무단변속기의 성능에 관한 연구)

  • 박재민;김연수;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.739-742
    • /
    • 1997
  • Continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdriver mode. They are not required of a starting device as a torque converter. CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and theoretical efficiency are executed.

  • PDF

Method for Current-Driving of the Loudspeakers with Class D Audio Power Amplifiers Using Input Signal Pre-Compensation (입력 신호의 전치 보상을 이용한 D 급 음향 전력 증폭기의 스피커 전류 구동 방법)

  • Eun, Changsoo;Lee, Yu-chil
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1068-1075
    • /
    • 2018
  • We propose a method for driving loudspeakers from class D audio power amplifiers in current mode, instead of in conventional voltage mode, which was impossible with the feedback circuitry. Unlike analog audio amplifiers, Class D audio power amplifiers have signal delay between the input and output signals, which makes it difficult to apply the feedback circuitry for current-mode driving. The idea of the pre-distortion scheme used for the compensation of the non-linearity of RF power amplifiers is adapted to remedy the impedance variation effect of the loudspeakers for current driving. The method uses the speaker model for the pre-distorter to compensate for the speaker impedance variation with frequency. The simulation and test results confirms the validity of the proposed method.

On Teaching Switched Mode Power Supplies - A Converter with Limited Duty Cycle

  • Himmelstoss, Felix A.
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.667-672
    • /
    • 2010
  • A way how to teach a general understanding of switched mode power supplies (SMPS) is shown. A fourth order PWM DC-to-DC converter with limited duty cycle range is treated as an example and a survey over important data (maximum voltage and current ratings for the elements, rms- values for the semiconductor devices and a rough approximation of the losses) of the circuit is given. Furthermore, a converter model based on duty ratio averaging is established. Continuous mode of operation is used. The results make it possible to estimate the applicability of the given converter structure and offer sufficient material for the calculation, design, and analysis and give a better insight into switched mode energy conversion.

SSCI Mitigation of Series-compensated DFIG Wind Power Plants with Robust Sliding Mode Controller using Feedback Linearization

  • Li, Penghan;Xiong, Linyun;Wang, Jie;Ma, Meiling;Khan, Muhammad Waseem
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.569-579
    • /
    • 2019
  • A robust controller is designed based on feedback linearization and sliding mode control to damp sub-synchronous control interaction (SSCI) in doubly fed induction generator (DFIG) wind power plants (WPPs) interfaced with the grid. A feedback-linearized sliding mode controller (FLSMC) is developed for the rotor-side converter (RSC) through feedback linearization, design of the sliding mode controller, and parameter tuning with the use of particle swarm optimization. A series-compensated 100-MW DFIG WPP is adopted in simulation to evaluate the effectiveness of the designed FLSMC at different compensation degrees and wind speeds. The performance of the designed controller in damping SSCI is compared with proportional-integral controller and conventional sub-synchronous resonance damping controller. Besides the better damping capability, the proposed FLSMC enhances robustness of the system under parameter variations.

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

Control Technique of Triple-Active-Bridge Converter and Its Effective Controller Design Based on Small Signal Model for Islanding Mode Operation (단독운전 모드 동작에서의 Triple-Active-Bridge 컨버터 제어 기법 및 소신호 모델을 기반으로 한 제어기 설계)

  • Jeon, Chano;Heo, Kyoung-Wook;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.192-199
    • /
    • 2022
  • In DC distribution systems, a TAB converter employing multiple transformers is one of the most widely used topologies due to its high power density, modularizability, and cost-effectiveness. However, the conventional control technique for a grid-connected mode in the TAB converter cannot maintain its reliability for an islanding mode under a blackout situation. In this paper, the islanding mode control technique is proposed to solve this issue. To verify the relative stability and dynamic characteristics of the control technique, small-signal models of both the grid connected and the islanding mode are derived. Based on the small-signal models, PI controllers are designed to provide suitable power control. The proposed control technique, the accuracy of small-signal models, and the performance of the controllers are verified by simulations and experiments with a 1-kW prototype TAB converter.

Analysis of Power Supply System for 8.5 MVA Magnetic Power Supply Using EI (EMTDC를 이용한 8.5 MVA급 Magnetic Power Supply의 전력공급 시스템 분석)

  • Jeong, Yong-Hoo;Nho, Eui-Cheol;Kim, In-Dong;Choi, Jung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1114-1116
    • /
    • 2002
  • The characteristics of voltage drop and THD for parallel operating 11 PCRs (Phase Controlled Rectifiers) are analysed. The PCRs are used to drive high current (1.6 kA ${\sim}$ 3.7 kADC) electromagnetic coils for electromagnets. All the PCRs operate simultaneously in pulsed mode, and the pulse shot occurs every 150 seconds. During the pulse operation the PCR output current ramps up for 4 seconds, and then keeps flat top state for 2 seconds, and finally ramps down for 4 seconds. For the flat top mode a severe voltage drop and distortion appear in the power system because transformers for the PCRs are designed considering pulsed mode operation. It is expected that the analysis method can be applied to improve the system performance including power factor and design of high power pulsed mode operating power supply systems.

  • PDF

A Study on the Criteria for Setting the Dynamic Control Mode of Battery Energy Storage System in Power Systems (전력계통 적용을 위한 배터리 에너지저장장치의 동적 제어모드 판단기준에 관한 연구)

  • Han, Jun Bum;U, Garam;Kook, Kyung Soo;Chang, Byunghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.444-450
    • /
    • 2013
  • This paper presents the criteria for setting the dynamic operating mode of BESS(Battery Energy Storage System) in the bulk power systems. ESS has been expected to improve the degraded dynamic performance of the power system with high penetration of the renewable resources. While ESS is controlled in steady state or dynamic operating mode for its better effectiveness depending on the operating conditions of power systems, the criteria for setting the dynamic operating mode for the transient period needs to be robust enough to cover all the different conditions. The proposed criteria consider the varying conditions and the operating practices of the bulk power systems.