• Title/Summary/Keyword: Power Mode

Search Result 4,686, Processing Time 0.052 seconds

Sliding Mode Current Controller Design for Power LEDs

  • Kim, Eung-Seok;Kim, Cherl-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.104-110
    • /
    • 2011
  • High-brightness LED control is required for stable operation, thus the driver and control system must be designed to deliver a constant current to optimize reliability and ensure consistent luminous flux. In this paper, the sliding mode current controller is designed to adjust the illumination density of power LEDs. The controller design model of power LEDs, including its driving circuit, is proposed to realize the dimming control of power LEDs. A buck converter is introduced to drive the power LEDs and reduce the input voltage to a lower level. The sliding mode software controller is implemented to adjust the dimming of power LEDs. The proposed strategy for driving power LEDs is investigated and comparatively studied by experiments.

Efficient Power-Saving 10-Gb/s ONU Using Uplink Usage-Dependent Sleep Mode Control Algorithm in WDM-PON

  • Lee, Han Hyub;Kim, Kwangok;Lee, Jonghyun;Lee, Sangsoo
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.253-258
    • /
    • 2013
  • We propose and demonstrate an efficient power-saving optical network unit (ONU) based on upstream traffic monitoring for 10-Gb/s wavelength division multiplexed passive optical networks (WDM-PONs). The power-saving mode controller uses a ${\mu}$-processor and traffic monitoring modules followed by the proposed power-saving processes to operate the sleep mode ONU. The power consumption of the ONU is effectively reduced from 19.3 W to 6.4 W when no traffic from the users is detected. In addition, we design a power-saving mechanism based on a cyclic sleep mode operation to allow a connectivity check between the optical line terminal and ONU. Our calculation results show that the WDM-PON ONU reduces the power consumption by around 60% using the proposed mechanism.

Self-timed Current-mode Logic Family having Low-leakage Current for Low-power SoCs (저 전력 SoC를 위한 저 누설전류 특성을 갖는 Self-Timed Current-Mode Logic Family)

  • Song, Jin-Seok;Kong, Jeong-Taek;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.37-43
    • /
    • 2008
  • This paper introduces a high-speed low-power self-timed current-mode logic (STCML) that reduces both dynamic and leakage power dissipation. STCML significantly reduces the leakage portion of the power consumption using a pulse-mode control for shorting the virtual ground node. The proposed logic style also minimizes the dynamic portion of the power consumption due to short-circuit current by employing an enhanced self-timing buffer. Comparison results using a 80-nm CMOS technology show that STCML achieves 26 times reduction on leakage power consumption and 27% reduction on dynamic power consumption as compared to the conventional current-mode logic. They also indicate that up to 59% reduction on leakage power consumption compared to differential cascode voltage switch logic (DCVS).

Effects of Soaansintang(SOAT) on the hemodynamics and electrocardiogram of isolated rat hearts induced by electrical stimulation (소아안신탕(小兒安神湯)이 STRESS를 유발한 흰쥐의 적출심장(摘出心臟)에 미치는 영향)

  • Lee Seung-Jun;Lee Jin-Yong;Kim Deok-Gon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-32
    • /
    • 2000
  • It has long been known that SOAT is effective for sudden palpitation occurring unexpectedly in Oriental Medicine. However, effect of SOAT on the isolated heart has not been studied yet. The purpose of this study is to investigate the effect of SOAT on hemodynamics and ECG of isolated rat hearts induced by electrical stimulation using Langendorff perfusion apparatus for nonworking heart. SOAT extract was manufactured by water-alcohol precipitated method. Sprague-Dawley rats weighting $120{\sim}150g$ were used for the experiments, Subject animals were divided into four groups, which are consisted of 1) control(Group orally administered by normal saline 1ml for 14days), 2) sample A(Group orally administered by SOAT extract 1ml for 14days), 3) sample C(Group injected by SOAT extract 0.5ml after stimulation, 4) sample C(Group injected by SOAT extract 1ml after stimulation. To evluate the effects of SOAT on hemodynamics and ECG of isolated rat heart induced by stimulation, heart rate, left ventricular pressure, systolic power, diastolic power, coronary artery perfusion volume and ECG were measured using Langendorff apparatus in both stimulation mode(5 volts, 450 beats/min) and arrythmic mode(5 volts, 420 beats/min including 60 beats/min) The results obtained are as follows : 1. After receiving stressful electrical stimuli, isolated heart showed the heart rate, left ventricular pressure, systolic power, diastolic power, coronary artery perfusion volume were all decreased temporarily, but perfusion continued longer recovery to the control state appeared. However, the coronary artery perfusion volume diminished continuously. 2. The heart rates did not change significantly with both stimulation mode and arrhythmic mode, among experimental groups. 3. The left ventricular pressure showed with both stimulation mode and arrhythmic mode, the significant changes(p<0.05) especially in the injection sample group. In case of stimulation mode, low concentration injection group(0.5ml) was more significantly increased rather than high concentration group(1ml) and in case of arrhythmic mode, high density group(1ml) was so increased than the other(0.5ml). 4. For the systolic power and diastolic power, no significant changes were noticed in the stimulation mode, but in the arrhythmic mode of injection sample groups, significant change(p<0.05) was noticed in both systolic power and diastolic power. Specially the high concentration group(1ml) showed more significant increase than the low concentration group. 5. For the coronary artery perfusion volume, no significant change difference among sample groups was observed in both the stimulation mode and the arrhythmic mode. 6. For the ECG recordings, arrhythmia was induced by electrical stimulus of arrythmia mode and after the stimulus was removed, irregular wave appeared temporarily, but as perpusion continued, recovery to the control state was abtained like the stimulation mode. According to the above results, SOAT significantly changed the hemodynamic data from the electrically stressed, isolated hearts of connected Langendorff perfusion apparatus and we propose SOAT has the direct effects on the muscular function of heart.

  • PDF

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

Design for reduction EMI of flyback switching power supply

  • Theirakul, Chaivat;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1891-1895
    • /
    • 2003
  • Switch-mode power supplies (SMPS) have become a major source of conducted electromagnetic interference (EMI) which is the combination between differential mode (DM) noise and common mode (CM) noise. This paper presents the conducted EMI reduction approach in flyback switched mode power supply by rerouting for circuit balance to reduce common mode noise. And differential mode noise can be reduce by adding $c_x$ capacitor across the input power line, and passive element to the gate drive of switching device MOSFET to slow down the switching times. This combination of our approach is the effective way to reduce the conducted EMI and it is also a cost effective for product design

  • PDF

KOMPSAT-2 AOCS Control Mode & Power Safe Mode Design

  • Rhee, Seung-Wu;Kim, Hak-Jung;Lee, Joo-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • KOMPSAT-2 is the second Korean earth observation satellite after KOMPSAT-l: the 1 meter GSD cartographic capability and planning to launch at the end of 2005 by ROKOT launch vehicle. The dedicated AOCS operational modes are designed for KOMPSAT-2 based on KOMPSAT-l experience All of AOCS operational modes requires gyro information. To compensate this drawback, Power Safe Mode is designed and implemented. Successfully AOCS on-board software is developed and extensively verified through a nonlinear simulation process. The simulation results of Power Safe Mode and Science Fine Submode are provided to demonstrate its functionality as well as its performance.

A Study on the Operating-Mode Characteristics of Two-Module Thyristor Controlled Series Compensator (Two-Module TCSC의 운전모드 특성 연구)

  • Jeong, Gyo-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1410-1416
    • /
    • 1999
  • This paper aims at investigating the operating-mode characteristics of two-module Thyristor Controlled Series Compensator (TCSC) as an equivalent of the multi-module TCSC in a simple three-phase power transmission system. The load flow program is developed to analyze the steady-state characteristics of two-module TCSC system and to find the thyristor firing angles for the required real power flow. The stability calculation program is developed with Poincare mapping theory. Simulation studies of the TCSC power transmission system using EMTP are performed to evaluate the transient characteristics of two-module TCSC as a real power flow controller and to rpove the results of the load flow calculation and the stability analysis. In the process of the study, the operating-mode characteristics of two-module TCSC are evaluated and compared to those of single-module TCSC.

  • PDF

An Experimental Study of T-mode Vibration on the Diesel Power Plant (디젤 발전소의 T-mode 진동에 관한 실험적 고찰)

  • Lee, D.C.;Nam, T.K.;Bae, Y.C.;Kim, Y.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.411-416
    • /
    • 2005
  • Nowadays, diesel power plant using low speed two stroke diesel engine is widely used in islands and restricted areas. Considerations were given to its benefit of high thermal efficiency, reliability and durability compared to the other prime movers. However, various types of engine vibration affect neighboring buildings to their structural vibration. For this, diesel power plant are held liable for the troubles caused by these vibration. These are mainly due to the X- and H-type engine vibrations which we excited by the X- and H- guide force moment. Authors have identified a structural vibration of new pattern called ‘T-mode vibration’ due to the torsional vibration of shafting system. In this paper, T-mode vibration is analyzed through an experimental method based on the global vibration measurement.

  • PDF

Reducing Current Distortion in Indirect Matrix Converters Operating in Boost Mode under Unbalanced Input Conditions

  • Choi, Dongho;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1142-1152
    • /
    • 2019
  • This paper presents a control method for reducing the current distortion in an indirect matrix converter (IMC) operating in boost mode under unbalanced input conditions. IMCs operating in boost mode are useful in distributed generation (DG) systems. They are connected with renewable energy systems (RESs) and the grid to transmit the power generated by the RES. However, under unbalanced voltage conditions of the RES, which is connected with the input stage of the IMC operating in boost mode, the input-output currents are distorted. In particular, the output current distortions cause a ripple of the power, which is transferred to the grid. This aggravates the reliability and stability of the DG system. Therefore, in this paper, a control method using positive/negative sequence voltages and currents is proposed for reducing the current distortion of both side in IMCs operating in boost mode. Simulation and experimental results have been presented to validate effectiveness of the proposed control method.