• Title/Summary/Keyword: Power Mechanism

Search Result 2,156, Processing Time 0.027 seconds

Impact of carbon dioxide on the stability of the small-scale structures by trapping the material properties

  • Zhou, Yunlong;Wang, Jian
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • The existence of active material in the environment causes the small-scale systems to be sensitive to the actual environment. Carbon dioxide is one of the active materials that exists a lot in the air conditions of the living environment. However, in some applications, the carbon dioxide-coated is used to improve the performance of systems against the destructive factors such as the corrosion; nevertheless, in the current research, the stability analysis of a carbon dioxide capture mechanism-coated beam is investigated according to the mathematical simulation of a rectangular composite beam utilizing the modified couple stress theory. The composite mechanism of carbon dioxide trapping is made of a polyacrylonitrile substrate that supports a cross-link polydimethylsiloxane gutter layer as the carbon dioxide mechanism trapping. Three novel types of carbon dioxide trapping mechanism involving methacrylate, poly (ethylene glycol) methyl ether methacrylate, and three pedant methacrylates are considered, which were introduced by Fu et al. (2016). Finally, according to introducing the methodology of carbon dioxide (CO2) trapping, the impact of various effective parameters on the stability of composite beams will be analyzed in detail.

Experimental Study on the Input Coupled type CVT combined a Differential Gear and V-Belt type CVU

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.43-55
    • /
    • 2001
  • A continuously variable transmission(CVT) mechanism composed of one differential gear unit and one continuously variable unit(CVU) can be classified according to the coupling of CVU and the direction of power flows. The mechanism has many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range and generation of geared neutral. The CVT mechanism considered here is the input coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type CVU. One shaft of the CVU is connected directly to the input shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations(speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Some useful comparisons between theoretical analysis and experimental results are presented. General properties also are discussed, which connect following power flow modes : (a) power circulation mode; (b) power split mode.

  • PDF

Development of the Power Assist System for High Efficiency and Lightweight Wearable Robot in Unstructured Battlefield (비정형화된 전장 환경에 활용 가능한 고효율-경량형 외골격 착용 로봇의 근력 보조 시스템 개발)

  • Huichang Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.313-323
    • /
    • 2023
  • The wearable robot system is designed to assist human skeletal and muscular systems for enhancing user's abilities in various fields, including medical, industrial, and military. The military has an expanding need for wearable robots with the integration of surveillance/control systems and advanced equipment in unstructured battlefield environments. However, there is a lack of research on the design and mechanism of wearable robots, especially for power assist systems. This study proposes a lightweight wearable robot system that provides comfortable wear and muscle support effects in various movements for soldiers performing high-strength and endurance missions. The Power assist mechanism is described and verified, and the tasks that require power assist are analyzed. This study explain the system including its driving mechanism, control system, and mechanical design. Finally, the performance of the robot is verified through experiments and evaluations, demonstrating its effectiveness in muscle support.

Dynamic ATIM Power Saving Mechanism(DAPSM) in 802.11 Ad-Hoc Networks (802.11 Ad-Hoc 네트웍에서 Power Save Mechanism을 개선한 DAPSM 알고리즘)

  • Park, Jae-Hyun;Lee, Jang-Su;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.475-480
    • /
    • 2007
  • Recently, wireless networking devices that depend on the limited Battery and power-saving of wireless hosts became important issue. Batteries can provide a finite amount of energy, therefore, to increase battery lifetime, it is important to design techniques to reduce energy consumption by wireless hosts. This paper improved power saying mechanism in Distributed Coordination Function(DCF) of IEEE 802.11. In the IEEE 802.11 power saving mechanism specified for DCF, time is divided into so-called beacon intervals. At the start of each beacon interval, each node in the power saving mode periodically wakes up during duration called the ATIM Window. The nodes are required to be synchronized to ensure that all nodes wake up at the same time. During the ATIM window, the nodes exchange control packets to determine whether they need to stay awake for the rest of the beacon interval. The size of the ATIM window has considerably affected power-saving. This paper can provide more power-saving than IEEE 802.11 power saving mode because ATIM window size is efficiently increased or decreased.

POWER AWARE ROUTING OPTIMIZATION: AN ENHANCEMENT

  • Nguyen, VanDong;Song, Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1453-1456
    • /
    • 2004
  • PARO, a power-aware routing optimization mechanism, is proposed in [1] to minimize the transmission power needed to forward packets between wireless devices in ad hoc network. The mechanism works by redirecting the route to pass through one or more intermediate nodes on behalf on source-destination pairs, then reducing the end-to-end transmission power. This paper will show an extension of this model and provide an analysis of the geometrical area lying between source and destination in which the intermediate node elects to perform redirection. The duration the intermediate node stays in that area is also computed.

  • PDF

An Enhanced Adaptive Power Control Mechanism for Small Ethernet Switch (소규모 이더넷 스위치에서 개선된 적응적 전력 제어 메커니즘)

  • Kim, Young-Hyeon;Lee, Sung-Keun;Koh, Jin-Gwang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.389-395
    • /
    • 2013
  • Ethernet is the most widely deployed access network protocol around the world. IEEE 802.3az WG released the EEE standard based on LPI mode to improve the energy efficiency of Ethernet. This paper proposes improved adaptive power control mechanism that can enhance energy-efficiency based on EEE from small Ethernet switch. The feature of this mechanism is that it predicts the traffic characteristic of next cycle by measuring the amount of traffic flowing in during certain period and adjusts the optimal threshold value to relevant traffic load. Performance evaluation results indicate that the proposed mechanism improves overall performance compared to traditional mechanism, since it significantly reduces energy consumption rate, even though average packet delay increases a little bit.

A Design and Experiment of Pressure and Shape Adaptive Mechanism for Detection of Defects in Wind Power Blade (풍력 발전용 블레이드 접합부의 결함 검출을 위한 일정가압 메커니즘 설계 및 실험)

  • Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan;Chi, Su Chung;Nam, Mun Ho
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2017
  • Purpose: Reliability is the most important factor to detect defects as wind turbines are deployed in large blades. The methods of detecting defects are various, such as non-destructive inspection and thermal imaging inspection. We propose the phased array ultrasonic testing method of non-destructive testing. Methods: We propose the active pressure mechanism for wind power blade. The phase array ultrasonic inspection method is used for fault detection inner blade surface. Controlled pressure of mechanism with respect to z-axis is important for guarantee the result of phase array ultrasonic inspection. The model based control and proposed mechanism are utilized for overall system stability and effectiveness of system. Result: The result of proposed pressure mechanism B is more stable than A. Convergence speed is also faster than A. Conclusion: We confirmed the performance of the proposed constant pressure mechanism through experiments. Non-destructive testing was applied to the specimen to confirm the reliability of detecting defects.

Power-Assisted Door for a Passenger Vehicle (승용차의 개폐력 보조 문)

  • Lee, Byoung-Soo;Park, Min-Kyu;Sung, Kum-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.532-538
    • /
    • 2010
  • SD (Smart Door) is a human friendly power-assisted door system initially targeted for passenger car doors. The Smart Door offers comfort and safety to passengers or/and drivers by supplying additional power. Amount of power supplied by the Smart Door system is depend on the environment where the automotive is situated. It realizes comfort, for example, when the force applied by the passenger to the door is expected to be abnormal, the SD system tries to compensate passenger's effort by supplying additional force. In this study, to enhance the ease of opening and closing the doors of the passenger vehicle, a Smart Door with a power assist mechanism consisting of a motor was developed and analysed. A power assist mechanism mounted within the vehicle's door is designed and modeled for simulation purpose. The required force necessary to control the designed mechanism during the vehicle's roll, pitch and the opening angle of the door has been considered. To this end, we propose a power-assisting control strategy called "gravity cancellation". The system is analysed by numerical simulation with the gravity cancellation control algorithm.

Modeling and Development of Human-Muscle Type Humanoid (인체근육 구조 인간형 로봇의 모델링 및 구현)

  • Oh, Ji-Heon;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.64-72
    • /
    • 2007
  • Many human-body motions such as walking, running, jumping, etc. require a significant amount of power. To achieve a high power-to-weight ratio of the humanoid robot system, this paper proposes a new design of the bio-mimetic leg mechanism resembling musculoskeletal system of the human body. The hip joints of the system considered here are powered by 5 human-like bi-and mono-articular muscles, and the joints of knee and ankle are redundantly actuated by both bi-articular muscles and joint actuators. The kinematics for the leg mechanism is derived and a kinematic index to measure force transmission ratio is introduced. It is demonstrated through simulation that incorporation of redundant muscles into the leg mechanism enhances the power of the mechanism approximately 2 times of the minimum actuation.

Degradation characteristics of pumps in nuclear power plants (원전 펌프의 성능저하 특성)

  • Lee, D.H.;Park, S.G.;Hong, S.D.;Lee, B.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.593-598
    • /
    • 2008
  • In the present study, degradation characteristics of pumps in nuclear power plants were investigated to provide the information of degradation mechanism and stressors. The failure records of pumps for the periods 2000 to 2006 on INPO(Institute of Nuclear Power Operations) EPIX(Equipment Performance and Information Exchange System) DB were reviewed. The 1,834 failure records reveal that the critical areas of pump failures are bearing, mechanical seal, gasket/o-ring, shaft, impeller, coupling and packing. Based on the failure rate of critical areas, the important degradation mechanism and stressors were determined. Additionally, the relationship between degradation mechanism and stressors such as wear was examined. Finally, the monitoring parameters related to degradation and stressors were discussed for the future development of degradation evaluation and prognosis technology of pumps.

  • PDF