• 제목/요약/키워드: Power Load

검색결과 7,478건 처리시간 0.037초

무정전 전원장치 효율 향상에 대한 연구 (Efficiency Improvement of Uninterruptible Power Supply Systems)

  • 오홍일;권종원;박용만;오드게럴;김희식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.288-290
    • /
    • 2006
  • An efficiency improving method for Uninterruptible Power Supply System(UPS) was developed by using OP-AMP based application circuits such as voltage detection device, current detection device and static switch control device. The efficiency improving algorithm was made by mixing the operating concepts of On-Line type UPS with the operating concepts of Off-Line type UPS. The UPS' inverter does not work if the UPS' output load current is not higher than the low load operating current which is about 0-30(%) of the UPS' output load capacity. The low load operating current is adjustable within the half of the UPS' output load capacity. If the UPS' output load current is rising over than the low load operating current, the UPS' inverter starts working and the inverter output power feeds to the loads of UPS. If UPS' input power breaks out while UPS' inverter does not operate because the load current is low, the inverter starts working within 4(ms) with excessive output voltage which is ${\pm}$8(%) of normal UPS' output voltage. Like these. UPS can continuously feeds power to it's load device and reduce power consumptions.

  • PDF

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

전기추진시스템용 OPMS 기법 연구 (Optimization Power Management System for electric propulsion system)

  • 이종학;오진석
    • 한국정보통신학회논문지
    • /
    • 제23권8호
    • /
    • pp.923-929
    • /
    • 2019
  • 자율운항선박의 기반은 추진시스템의 안정성이 중요하며, 추진체계의 안정성을 위하여 다중 발전 체계 및 추진체계를 갖추어야한다. 기존 선박에서는 안정성을 위하여 높은 발전 용량을 산정하며, 그 결과 저부하 운전으로 인한 경제성 하락을 야기한다. 이를 해결하기 위해서는 전력체계의 최적화를 통하여 발전 체계의 경량화와 효율의 증가가 필요하다. 본 논문에서는 전기추진선박용 OPMS(Optimization Power Management System)를 구축한다. OPMS는 하이브리드형 발전시스템, 에너지저장시스템, 부하제어시스템으로 구성된다. 발전시스템은 이중연료엔진, 에너지저장시스템은 배터리, 부하제어시스템은 추진 부하, 상용 부하, 불규칙 부하, 화물 기기 관련 부하, 갑판 부하로 구성된다. 각 시스템별 기기들의 특성에 대하여 모델링하여 전력체계를 구축하였다. 실험을 위하여 선박 운용에 따른 시나리오를 작성하고 안정성 및 경제성을 기존의 전기추진선박과 비교하였다. 실험의 결과 발전기의 비교적 적은 시간 투입으로 같은 전력량을 공급함으로써 선박의 LNG 1.3%, Main Fuel 0.3%, Pilot Fuel 35.1%의 연료소모량 감소를 통하여 경제성 및 안정성을 확인하였다.

대규모 전력계통의 부하역률 대표모델 산정을 위한 데이터베이스 구축 (Database Construction to compute Representative Model of Load Power Factor in Large Scale Power System)

  • 이정희;김광욱;조종만;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.209-211
    • /
    • 2002
  • This paper computes the regional, seasonal and hourly representative model of load power factor considering load characteristics of all 154/22.9 kV substations. An accurately computed representative model of load power factor is studied to present a precision improvement of power system analysis and the security of the system. The method to compute representative model of load utilizes the method of applicable moving average based on the method of flow average. The EMS data are used as the source to assess the load power factor.

  • PDF

Design of a Microcontroller Based Electronic Load Controller for a Self Excited Induction Generator Supplying Single-Phase Loads

  • Gao, Sarsing;Murthy, S. S.;Bhuvaneswari, G.;Gayathri, M. Sree Lalitha
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.444-449
    • /
    • 2010
  • The generation of electric power using self excited induction generation (SEIG) is a viable option in remote and rural areas where grid electricity is not available. The generated voltage and frequency of these machines, however, varies with varying loads. This characteristic can be resolved either by adjusting the values of the excitation capacitance or by controlling the prime mover speed. Further, in a single-point constant power application, where the machines deliver a fixed amount of power, the electronic load controller (ELC) can be used to switch-in or switch-out a dump load whenever the consumer load decreases or increases respectively. This paper presents a detailed analysis and the design of a microcontroller based SEIG -ELC system intended for stand-alone pico hydro power generation. The simulated performance of the controller is supplemented by experimental results.

넓은 부하범위에서 고효율 특성을 갖는 역율개선회로의 PWM 제어기 (PWM Controller of Power Factor Correction Circuit to Improve Efficiency for Wide Load Range)

  • 손민수;김홍중;박귀철;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.75-76
    • /
    • 2016
  • This paper proposes a power factor correction circuit with a high efficiency over a wide load range characteristics for a communication power supply. And the characteristic verification is applied to produce a design of prototype. Power factor correction circuit can reduce conduction losses by applying Bridgeless Boost Converter for efficiency. Over a wide load range to maintain the efficient, the control method of a PWM controller is divided by two sections according to the load area. In the low-load region, it was reduced switching losses by applying the critical conduction mode control method. On the other hand, in the heavy-load area, the hysteresis current control method is used to maintain the high efficiency over a wide load range by limiting the peak noise of the inductor.

  • PDF

새로운 전력 부하모형 (New Electricity Load Model)

  • 김주락;최준영;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.289-291
    • /
    • 2000
  • In a competitive electricity power market, the price of electricity changes instantly, that of conventional market is predetermined and hardly changes. In such a new environment, customers' behaviors change instantly according to the changing electricity prices. If we develop a electricity load model that well describes the behavior of electricity consumers, we can utilize that model in forecasting the amount of future load, solving the load flow problem and finding the weak point of the system. In this paper new electricity model that considers the price of electricity and power factor of the load is presented. While conventional load model, which is demand function of electricity, uses the price of real and reactive power as the independent variable of the demand function. this new load model uses price of real power and penalty factor according to the power factor for the calculation of amount of electricity demand.

  • PDF

Mitigation of Negative Impedance Instabilities in a DC/DC Buck-Boost Converter with Composite Load

  • Singh, Suresh;Rathore, Nupur;Fulwani, Deepak
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1046-1055
    • /
    • 2016
  • A controller to mitigate the destabilizing effect of constant power load (CPL) is proposed for a DC/DC buck-boost converter. The load profile has been considered to be predominantly of CPL type. The negative incremental resistance of the CPL tends to destabilize the feeder system, which may be an input filter or another DC/DC converter. The proposed sliding mode controller aims to ensure system stability under the dominance of CPL. The effectiveness of the controller has been validated through real-time simulation studies and experiments under various operating conditions. The controller has been demonstrated to be robust with respect to variations in supply voltage and load and capable of mitigating instabilities induced by CPL. Furthermore, the controller has been validated using all possible load profiles, which may arise in modern-day DC-distributed power systems.

퍼지 최소 자승 선형회귀분석 알고리즘을 이용한 특수일 전력수요예측 (Load Forecasting for Holidays Using a Fuzzy Least Squares Linear Regression Algorithm)

  • 송경빈;구본석;백영식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.233-237
    • /
    • 2003
  • An accurate load forecasting is essential for economics and stability power system operation. Due to high relationship between the electric power load and the electric power price, the participants of the competitive power market are very interested in load forecasting. The percentage errors of load forecasting for holidays is relatively large. In order to improve the accuarcy of load forecasting for holidays, this paper proposed load forecasting method for holidays using a fuzzy least squares linear regression algorithm. The proposed algorithm is tested for load forecasting for holidays in 1996, 1997, and 2000. The test results show that the proposed algorithm is better than the algorithm using fuzzy linear regression.

부하변동에 따른 유도전동기 전류와 전력 특성 (Characteristics for Current and Power of Induction Motor by Load Variation)

  • 김종겸
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.82-87
    • /
    • 2011
  • Induction motor is most widely used as the driving power in the industrial site. Induction motor current is composed of two parts, magnetizing current and load current. Load current uses energy what is doing the work. Load current varies with load variance but magnetizing current is constant, regardless of load variation. Magnetizing current needs for establishing the rotating magnetic field of induction motor and lags behind the voltage. Generally capacitor is used for power-factor compensation of inductive load. Self-excitation occurs when the capacitive reactive current from the capacitor is greater than the magnetizing current of the induction motor. When this occurs, excessive voltages can result on the terminals of the motor. This excessive voltage can cause insulation degradation and ultimately result in motor insulation failure. In this paper, we analyzed that how the magnetizing current and condenser current is operating at the allowable limit by the load variation. Condenser current is below allowable limit of magnetizing current but magnetizing current is above allowable limit at the lower load operation condition.