• Title/Summary/Keyword: Power Line

Search Result 6,057, Processing Time 0.031 seconds

Study on Design and Application of an Inductive Coupler for Power Transmission Line (송전선용 비접촉식 커플러의 설계와 적용연구)

  • Kim, Hyun-Sik;Lee, Dong-Chul;Kim, Min-Ho;Lee, Gean;Oh, Young-Woo;Min, Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.234-239
    • /
    • 2010
  • An inductive coupler, which feeds communication to the electric power transmission line, is required to establish Power Line Communication(PLC). The electro-magnetic property of magnetic core and design technology for coupler are very important to manufacture an inductive coupler for power transmission line. The magnetic core with superior electro-magnetic property was manufactured by using nanocrystalline alloy and an inductive coupler, which can operate at the maximum 2,000 A current, was designed and manufactured by establishment of current saturation, signal out winding, and electromagnetic simulation in this study. Communication speed of 14 Mbps in 600 meter communication distance of the real electric power transmission line was obtained by using the inductive coupler and application possibility of the inductive coupler for the electric power transmission line was certified.

Design of an Inductive Coupler for Power Transmission line (송전선용 대용량 신호결합장치의 설계)

  • Kim, H.S.;Byun, W.B.;Kim, J.R.;Bae, E.R.;Lee, D.C.;Lee, H.Y.;Lee, J.H.;Ji, M.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.439-440
    • /
    • 2008
  • An inductive coupler, which feeds communication to the electric power transmission line, is required to establish Power Line Communication(PLC). The electro-magnetic property of magnetic core and design technology for coupler are very important to manufacture an inductive coupler for power transmission line. The magnetic core with superior electro-magnetic property was manufactured by using nano-crystalline alloy and an inductive coupler, which can operate at the maximum 2,000 A current, was designed and manufactured by establishment of current saturation, signal out winding, and electro-magnetic simulation in this study. Communication speed of 14 Mbps in 600 m communication distance of the real electric power transmission line was obtained by using the inductive coupler and application possibility of the inductive coupler for the electric power transmission line was certified.

  • PDF

A Study of Power Line Network Description Method for Multi path Analysis (다중경로 분석을 위한 전력선 네트워크 기술 방법에 관한 연구)

  • Oh, Hui-Myoung;Choi, Sung-Soo;Lee, Won-Tae;Kim, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2986-2988
    • /
    • 2005
  • To improve the reliability of power-line communication systems, the measurement and analysis has been proceeded in many power-line channel environments. In spite of the wired channel, power line channel has many multi-paths that are changing with load-variation, line-interconnection, impedance mismatching and so on. We accordingly need an analysis method based on the multi-path channel impulse response. Recently, a method to describe the homogeneous Power-line network has been published[1]. In this paper the modified method that can describe both the homogeneous and non -homogeneous power-line network has presented.

  • PDF

Analysis of Electromagnetic Field Around Distribution Line (배전선로 주변에서의 전자계 분포 해석)

  • Kwon, Myung-Rak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.672-676
    • /
    • 2017
  • Electrical energy is playing an increasingly vital role as the primary energy source in everyday life. With the increase in electric power consumption, power facilities are under an increasing stress and must operate at a high capacity. Consequently, the demand for electric power cables in power transmission and distribution lines is rapidly increasing. Underground distribution lines have been steadily replacing the aboveground lines owing to the increase in electric power demand and the need to increase the supply voltage. In addition to line damage, worker safety is of primary concern in this type of underground infrastructure. In this study, to improve the safety of workers dealing with underground transmission lines, we analyzed the electromagnetic field generated around the distribution line and determined the basic criteria for developing a device that can detect a live underground line.

Voltage Control in a Novel Three-Phase Line Interactive UPS System with Parallel-Series Active Power Line Conditioning Capabilities using AC Line Reactor (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 Line-Interactive UPS 시스뎀의 전압제어)

  • Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1072-1077
    • /
    • 2006
  • In this paper a novel 3-phase line interactive UPS(Uninterruptible Power Supply) system with parallel-series active power-line conditioning capability using AC line reactor and two four-leg PWM VSCs(Voltage Source Converters) is proposed. And the strategy of voltage control in proposed UPS system is explained. The objective of voltage control in parallel(shunt) and series PWM VSC of proposed UPS system is to guarantee satisfactory characteristics in steady state and transient state.

  • PDF

The study of emissive electromagnetic interference DMT PLC(Power Line Communication) (DMT 방식 전력선 통신의 전자파 장애에 관한 연구)

  • Choi, Jong-Pil;Shin, Chull-Chai
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.604-608
    • /
    • 2003
  • In this paper, we studied the radiated electric field of power-line with DMT signal source in the frequency range of $1.7{\sim}30 MHz$. First, we made the midium voltage power-line communication model for PLC and calculated the current through the power-line using the impedance of the power-line model. Second, we calculated the radiated electric field in power range $-50{\sim}-30 dBm$ using the calculated current. Consequently, the calculated emissive electromagnetic field from the DMT signal is similar to the measured result. So this study is applicable to the standard regulation of electromagnetic interference for PLC.

  • PDF

A Study on the Control of Solenoid Valve for Heating by using Power Line Communication (PLC) (전력선 통신을 이용한 난방용 솔레노이드밸브 제어에 관한 연구)

  • 신관우;김용태;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.647-650
    • /
    • 2003
  • PLC (Power Line Communication) is the communication method using the existing power line installed in houses and offices to convert and transmit high frequency communication signal from tens of KHz to tens of MHz, and receive the filtered signal using high frequency filter The advantage of PLC is that PLC uses the existing power line installed in houses and offices so it does not require separate power line. Easy and convenient access using electric outlets is another advantage of PLC. However, PLC has some disadvantages such as limited transmission power, high load interference and noise, variable signal attenuation, characteristic of impedance, and selective possibility of frequency property. We designed the boiler temperature control system unit by using the PLC modem. We can avoid unnecessary heating of separate temperature control unit, and save the cost accordingly control stability of the proposed system is proven through the experiment.

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Analysis of Off-Line and On-Line Partial Discharge in High Voltage Motor Stator Windings

  • Kim, Hee-Dong;Kong, Tae-Sik;Lee, Sang-Kil;Kim, Beom-Soo;Kim, Doo-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1086-1092
    • /
    • 2015
  • The off-line and on-line partial discharge (PD) in the stator winding of three high-voltage (HV) motors (1,400 HP, 6.6 kV) is measured and analyzed in this paper. The off-line PD is measured at high values between 24,300 ~ 36,100 pC after 18 years of motor operation. Spare replacement motors were not available for testing the degree of deterioration of the stator windings in standstill status. Therefore, on-line periodic analysis was conducted to monitor the trend of PD after installing a ceramic sensor (110 pF, 6.6 kV) in the terminal box for each phase of each motor. In the stator winding of the No.1 and No.2 HV motors, which showed high magnitudes of off-line PD and low magnitudes of on-line PD, defects are expected to appear in the neutral end of the winding. On the contrary, in the stator windings of the No.3 HV motor, which exhibits high off-line and on-line PD magnitude, defects are expected to appear in the terminal end of the winding where a voltage close to the phase voltage is applied.