• Title/Summary/Keyword: Power Lift

Search Result 387, Processing Time 0.036 seconds

Studies on the Application of Unit-inverter Parallel Operation to Sea-water Lift Pump in Power Plant (단위 인버터 병렬운전에 의한 발전소 해수펌크 적용)

  • 김수열;류홍우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • Due to the increase in capacity of auxiliary machinery in power plant, the importance of energy saving has been greatly emphasized. If the speed of fans or pumps is controlled in accordance with the variation of load, large electric energy can be saved. Large capacity inverter, 2MVA GTO inverter, has been developed by operating two of 1MVA unit inverters in parallel. The parallel operation of the unit inverter is accomplished through two output transformers of which the secondary windings are connected in series. The system is composed of one control cubicle, one rectifier cubicle and 2 unit inverter cubicles. This inverter system was applied to the sea water lift pump(SLP) driven by a 6.6KV 1500KW induction motor in Seo-Inchon power plant to save the electric energy. The parallel operation of inverters by 180 degrees apart in switching frequency helps to reduce the harmonic components.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation of Fin Tube in a Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2016
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift and drag fluctuation over the fin tube was investigated. The derived nondimensional lift PSD was compared with the results of the previous experimental studies and the characteristics of lift and drag PSD over a single fin tube was established from the present CFD study.

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

A Study on the Optimization Design of Check Valve for Marine Use (선박용 체크밸브의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

Preliminary Design of Human Powered Aircraft by the Consideration of Aerodynamic Performance (공기역학적 성능을 고려한 인간동력항공기 개념 설계)

  • Kang, Hyungmin;Kim, Cheolwan
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, preliminary design of human powered aircraft was performed by considering the aerodynamic performance. For this, overall weight including the aircraft and pilot was determined. Then, the main wing and horizontal/vertical tail were designed with appropriate selection of the airfoils and planform shapes. Based on these, three dimensional flow was calculated to obtain lift and drag coefficients and the position of center of gravity (CG). Consequently, it was shown that the lift and power of the aircraft satisfied the constraints of the minimum required lift and the pilot's available power. Also, the CG of the aircraft was located at aerodynamic center (AC) of the main wing, which guaranteed 26% of the static margin.

A Noble Control Scheme of Hybrid Magnet Levitation Train (복합자석형 자기부상차량의 제어특성 개선)

  • Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.127-130
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. A parallel complementary controller on the lift controller is proposed to reduce the sensitivity for parameter variation and force disturbance. Simulation and experiment show that the lift system has robustness to force disturbance.

  • PDF

A Recognition Method for the Step Movement of h Control Rod in Nuclear Power Plants

  • Kim, Choon-Kyung;Kim, Seog-Joo;Lee, Jong-Moo;Lee, Jang-Myung;Kwon, Soon-Man;Cheon, Jong-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.65.5-65
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Description of Prototype CRDM $\textbullet$ Theoretical Approach for estimating the gap variation between lift pole and lift armature $\textbullet$ Experimental Setup $\textbullet$ Experimental Results $\textbullet$ Conclusions

  • PDF

Design of Digital Governor Controller for Frequency Stability Improvement (주파수 안정도 개선을 위한 디지털 조속기 제어기 개발)

  • Lee, Sang-Hun;Choi, Sang-Gyu;Lee, Hwa-Chun;Song, Seung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.64-72
    • /
    • 2012
  • The interest in wind power generation area such as developing and operating wind-diesel pilot complex in remote and island regions that have difficulty in having power plant and connecting to power system is growing rapidly in the world. We have installed and researched the hybrid system in Sekgok Pilot Complex to meet the new generation system. From the monitored data of the system, the performance of each diesel power plant is outstanding. However, step out problem was detected with respect to load sharing and synchronization with decentralized power supply. An advanced controller design having better response time and stability is needed to solve such problem. In this paper, we proposed the algorithm, through digital controller of Governor, which is applied to hybrid system. As a result, we obtained the stable frequency value in variable loading conditions. Also, we proved the advanced response time and stability through the simulation and experiment by applying additional current signal to the control algorithm.

Development of Wearable Robot for Elbow Motion Assistance of Elderly (노약자의 팔꿈치 거동 지원을 위한 착용형 로봇 개발)

  • Jang, Hye-Yoen;Han, Chang-Soo;Kim, Tae-Sik;Jang, Jae-Ho;Han, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • The purpose of this study is to develop the algorithm which can control muscle power assist robot especially for elderly. Recently, wearable robots for power assistance are developed by many researchers, and its application fields are also variable such as for medical or military equipment. However, there are many technical barriers to develop the wearable robot. This study suggest a control method improving performance of a wearable robot system by using a EMG signal of major muscles and a force sensor signal as command signal of system. The result of the robot Prototype efficiency experiment, the case of Maximum Isometric motion it suggest 100% power of muscle, the man need only 66% of MVIC(Maximum Voluntary Isometric Contraction) to lift 5kg dumbbell without robot assist. However the man needs only 52% of MVIC to lift 5kg dumbbell with robot assist. Therefore 20% muscle power increased with robot assist. Also, we designed light weight robot mechanism that extract the command signal verified and drive the wanted motions.

A Study on the Benefit Estimation of MMC VSC-HVDC System (MMC VSC-HVDC의 경제성평가에 관한 연구)

  • Sun, Hwi-il;Park, Seong-Mi;Yoo, Dong-Wook;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Recently, interest in the DC transmission is rapidly increasing worldwide. In many countries and leading companies are prior to the aggressive development of HVDC technology and application. Especially, VSC-HVDC system has been widely applied to transfer power at long distance between power plant and power consumption area. Therefore in this paper, we analyzed the benefit-cost of VSC-HVDC system which has more advantages than existing transmission system. The proposed system is MMC(Modular Multilevel Converter) VSC-HVDC system that have stability of Power Grid, interconnect Large-scale New Power Generation Plants by prevents Blackout. And MMC VSC-HVDC system Reduced the loss importing foreign systems. And the benefits were calculated in four stages, and the costs were applied to the actual project. By evaluating the various avoidance costs compared to the benefit-cost, it was confirmed that MMC VSC-HVDC system was advantageous in system stability and economic and social benefits.