• Title/Summary/Keyword: Power Flux Density

Search Result 315, Processing Time 0.025 seconds

Efficient Multicasting Mechanism for Mobile Computing Environment Machine learning Model to estimate Nitrogen Ion State using Traingng Data from Plasma Sheath Monitoring Sensor (Plasma Sheath Monitoring Sensor 데이터를 활용한 질소이온 상태예측 모형의 기계학습)

  • Jung, Hee-jin;Ryu, Jinseung;Jeong, Minjoong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.27-30
    • /
    • 2022
  • The plasma process, which has many advantages in terms of efficiency and environment compared to conventional process methods, is widely used in semiconductor manufacturing. Plasma Sheath is a dark region observed between the plasma bulk and the chamber wall surrounding it or the electrode. The Plasma Sheath Monitoring Sensor (PSMS) measures the difference in voltage between the plasma and the electrode and the RF power applied to the electrode in real time. The PSMS data, therefore, are expected to have a high correlation with the state of plasma in the plasma chamber. In this study, a model for predicting the state of nitrogen ions in the plasma chamber is training by a deep learning machine learning techniques using PSMS data. For the data used in the study, PSMS data measured in an experiment with different power and pressure settings were used as training data, and the ratio, flux, and density of nitrogen ions measured in plasma bulk and Si substrate were used as labels. The results of this study are expected to be the basis of artificial intelligence technology for the optimization of plasma processes and real-time precise control in the future.

  • PDF

The surface kinetic properties of $ZrO_2$ Thin Films in dry etching by Inductively Coupled Plasma

  • Yang-Xue, Yang-Xue;Kim, Hwan-Jun;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.105-105
    • /
    • 2009
  • $ZrO_2$ is one of the most attractive high dielectric constant (high-k) materials. As integrated circuit device dimensions continue to be scaled down, high-k materials have been studied more to resolve the problems for replacing the EY31conventional $SiO_2$. $ZrO_2$ has many favorable properties as a high dielectric constant (k= 20~25), wide band gap (5~7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2/Si$ structure. In order to get fine-line patterns, plasma etching has been studied more in the fabrication of ultra large-scale integrated circuits. The relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compound In this study, the surface kinetic properties of $ZrO_2$ thin film was investigated in function of Ch addition to $BCl_3/Ar$ gas mixture ratio, RF power and DC-bias power based on substrate temperature. The figure 1 showed the etch rate of $ZrO_2$ thin film as function of gas mixing ratio of $Cl_2/BCl_3/Ar$ dependent on temperature. The chemical state of film was investigated using x-ray photoelectron spectroscopy (XPS). The characteristics of the plasma were estimated using optical emission spectroscopy (OES). Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Temperature Dependence on Dry Etching of $ZrO_2$ Thin Films in $Cl_2/BCl_3$/Ar Inductively Coupled Plasma ($Cl_2/BCl_3$/Ar 유도 결합 플라즈마에서 온도에 따른 $ZrO_2$ 박막의 식각)

  • Yang, Xue;Kim, Dong-Pyo;Lee, Cheol-In;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.145-145
    • /
    • 2008
  • High-k materials have been paid much more attention for their characteristics with high permittivity to reduce the leakage current through the scaled gate oxide. Among the high-k materials, $ZrO_2$ is one of the most attractive ones combing such favorable properties as a high dielectric constant (k= 20 ~ 25), wide band gap (5 ~ 7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2$/Si structure. During the etching process, plasma etching has been widely used to define fine-line patterns, selectively remove materials over topography, planarize surfaces, and trip photoresist. About the high-k materials etching, the relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Among several etching techniques, we chose the inductively coupled plasma (ICP) for high-density plasma, easy control of ion energy and flux, low ownership and simple structure. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. During the etching process, the wafer surface temperature is an important parameter, until now, there is less study on temperature parameter. In this study, the etch mechanism of $ZrO_2$ thin film was investigated in function of $Cl_2$ addition to $BCl_3$/Ar gas mixture ratio, RF power and DC-bias power based on substrate temperature increased from $10^{\circ}C$ to $80^{\circ}C$. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by scanning emission spectroscope (SEM). The chemical state of film was investigated using energy dispersive X-ray (EDX).

  • PDF

Field Loss Analysis and Cooling Analysis of HTS Synchronous Motor (고온초전도 동기모터의 계자손실 해석 및 냉각 해석)

  • Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.