• Title/Summary/Keyword: Power Flux Density

Search Result 315, Processing Time 0.026 seconds

Analysis of the Electromagnetic Clutch for Emergency Power Generator (비상발전기용 전자클러치의 자계해석)

  • Jeon, Mun-Ho;Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.111-116
    • /
    • 2011
  • This paper deals with the electromagnetic clutch which stop the generator at emergency by using the engine power of generator. The electromagnetic field was analyzed using Flux-2d program with different conditions : voltage, air gap, coil locations. As a result, the maximum magnetic flux density of electromagnetic clutch occurred between the coil and wheel : 0.27[T], 0.41[T] at 12[V], 24[V]. The maximum flux density was at the center location of the coil.

An Experimental Study on the Characteristics of Flux Density Distributions in the Focal Region of a Solar Concentrator (태양열 집광기의 초점 지역에 형성된 플럭스 밀도 분포의 특성)

  • Hyun, S.T.;Kang, Y.H.;Yoon, H.G.;Yoo, C.K.;Kang, M.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2002
  • This experimental study represents the results of an analysis on the characteristics of flux density distributions in the focal region of solar concentrator. The characteristics of flux density distributions are investigated to optimally design and position a cavity receiver. This deemed very useful to find and correct various errors associated with a dish concentrator. We estimated the flux density distribution on the target placed along with focal lengths from the dish vertex to experimentally determine the focal length. It is observed that the actual focal point exists when the focal length is 2.17 m. We also evaluated the position of flux centroid, and it was found that there were errors within 2 cm from the target center. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius.

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap (공극 제어에 의한 Axial Flux Motor의 최적 운전 특성)

  • 오성철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

Design and Efficiency Characteristic Test of 340W Home Appliance Synchronous Reluctance Motor (가전용 340W급 동기형 릴럭턴스 전동기 설계 및 효율특성 실험)

  • 이중호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.39-52
    • /
    • 2003
  • This paper deals with an automatic design procedure for the maximum torque density and power factor in a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to the number of flux barrier and the ratio Kw of flux barrier width to iron sheet width of a SynRM under the mechanical constraint. The Finite Elements Analysis (FEA) has been used to evaluate the maximum torque density and power factor with each rotor shape. The proposed procedure allows to define the rotor geometric dimensions starling from an existing mootor or a preliminary design. The maximum torque density and power factor of a SynRM has been resulted with the rotor design variation. To prove the propriety of the designed SynRM, the Digital Signal Processor (DSP) installed experimental devices are equipped and the efficiency characteristic test is Performed.

RABBIT HEATING BY MICROWAVE EXPOSURE AT VARIOUS AMBIENT TEMPERATURES

  • Kolganova, Olga I.;Zhavoronkov, Leonid P.;Petin, Vladislav G.;Kim, Jin-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.99-104
    • /
    • 2010
  • The potential ability of environmental temperature to enhance the effect of microwave radiation (7 GHz) was experimentally studied for rabbit heating after simultaneous application of both agents. The tested ambient temperatures (30 and $38^{\circ}C$) didn't exert a considerable influence upon rabbit heat homeostasis after the used duration of exposure (3 hours and 15 minutes, correspondingly). The synergistic interaction of microwave irradiation and ambient temperature was demonstrated for rabbit heating. Power flux density of microwave irradiation was shown to be a determinant of the synergistic interaction effectiveness. For the fixed ambient temperature ($30^{\circ}C$), the synergism was shown to be observed only within a definite power flux density ($0-100\;mW{\cdot}cm^{-2}$), inside of which there was an optimal intensity ($20\;mW{\cdot}cm^{-2}$), which maximized the synergistic effect. Any deviation of the power flux density from the optimal value resulted in a reduction of the synergy. It is concluded that any assessment of the health or environmental risks should take into account the synergistic interaction between ambient temperature and microwave radiation.

Magnetic properties of high silicon steel processed by powder metallurgy (분말야금 공정에 의한 고규소강의 자성특성)

  • Yim, Tai-Hong;Chung, Hyung-Sik;Kang, Won-Koo;Chung, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.231-235
    • /
    • 1990
  • Soft magnetic silicon steels containing up to 6.5wt% of silicon were prepared by powder metallurgical processing and their magnetic properties were evaluated. The magnetic properties of P/M silicon steels are similarly affected by the silicon addition as those of conventional ingot processed ones but are also significantly affected by density and interstitial impurities particularly oxygen content. Magnetic flux density, $B_{10}$ and coercivity, Hc, tends to decrease with silicon content whereas maximum permeability, ${\mu}m$, decreases first and then increases rapidly above 5 wt% silicon. Increasing density also increases magnetic flux density and maximum permeability but reduces coereivity. The latter two properties are, however, affected more strongly with oxygen content.

  • PDF

Magnetic field effect on the positive column of fluorescent lamp (형광등 Positive column에 대한 자장인가 효과)

  • 지철근;김창종
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.197-203
    • /
    • 1982
  • The effects on the characteristics of 20-W fluorescent lamp were studied when applying magnetic field to its positive column. First, when the direction of the magnetic field is axial, i.e., along the lamp, if the magnitude of the field is stronger than the critical field, lamp voltage is increased, lamp current decreased, luminous flux increased, starting voltage decreased, as increasing the applied magnetic field. At the magnetic flux density is 130 gauss, luminous flux is increased to about 6 percents and starting voltage is increased to about 45 percents. Second, when the direction of the magnetic field is transverse to the lamp axis, as increasing the applied magnetic field, lamp voltage is increased, lamp current decreased, luminous flux increased and starting voltage is nearly constant, but the rates of increase or decrease of this case is different from those of the first. At the magnetic flux density is 300 gauss, luminous flux is increased about 45 percents. In both cases, electric power dissipated by lamps is the same as that of the lamp which magnetic field is not applied to.

  • PDF

Analytical Calculation for Predicting the Air Gap Flux Density in Surface-Mounted Permanent Magnet Synchronous Machine

  • Feng, Yan-li;Zhang, Cheng-ning
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.769-777
    • /
    • 2017
  • The research of air gap flux density has a significant effect on predicting and optimizing the structure parameters of electrical machines. In the paper, the air gap coefficient, leakage flux factor and saturation coefficient are first analytically expressed in terms of motor properties and structure parameters. Subsequently, the analytical model of average air gap flux density for surface-mounted permanent magnet synchronous machines is proposed with considering slotting effect and saturation. In order to verify the accuracy of the proposed analytical model, the experiment and finite element analysis (FEA) are used. It shows that the analytical results keep consistency well with the experimental result and FEA results, and the errors between FEA results and analytical results are less than 5% for SPM with high power. Finally, the analytical model is applied to optimizing the motor structure parameters. The optimal results indicate that the analytical calculation model provides a great potential to the machine design and optimization.