• Title/Summary/Keyword: Power Estimation Model

Search Result 826, Processing Time 0.03 seconds

Estimation of fire Experiment Prediction by Utility Tunnels Fire Experiment and Simulation (지하공동구 화재 실험 및 시뮬레이션에 의한 화재 설칠 예측 평가)

  • 윤명오;고재선;박형주;박성은
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2001
  • The utility tunnels are the important facility as a mainstay of country because of the latest communication developments. However, the utilities tunnel is difficult to deal with in case of a fire accident. When a cable burns, the black smoke containing poisonous gas will be reduced. This black smoke goes into the tunnel, and makes it difficult to extinguish the fire. Therefore, when there was a fire in the utility tunnel, the central nerves of the country had been paralyzed, such as property damage, communication interruption, in addition to inconvenience for people. This paper is based on the fire occurred in the past, and reenacting the fire by making the real utilities tunnel model. The aim of this paper is the scientific analysis of the character image of the fire, and the verification of each fire protection system whether it works well after process of setting up a fire protection system in the utilities tunnel at a constant temperature. The fire experiment was equipped with the linear heat detector, the fire door, the connection water spray system and the ventilation system in the utilities tunnel. Fixed portion of an electric power supply cable was coated with a fire retardant coating, and a heating tube was covered with a fireproof. The result showed that the highest temperature was $932^{\circ}c$ and the linear heat detector was working at the constant temperature, and it pointed at the place of the fire on the receiving board, and Fixed portion of the electric power supply cable coated with the fire retardant coating did not work as the fireproof. The heating tube was covered with the fireproof about 30 minutes.

  • PDF

Speed-up Techniques for High-Resolution Grid Data Processing in the Early Warning System for Agrometeorological Disaster (농업기상재해 조기경보시스템에서의 고해상도 격자형 자료의 처리 속도 향상 기법)

  • Park, J.H.;Shin, Y.S.;Kim, S.K.;Kang, W.S.;Han, Y.K.;Kim, J.H.;Kim, D.J.;Kim, S.O.;Shim, K.M.;Park, E.W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2017
  • The objective of this study is to enhance the model's speed of estimating weather variables (e.g., minimum/maximum temperature, sunshine hour, PRISM (Parameter-elevation Regression on Independent Slopes Model) based precipitation), which are applied to the Agrometeorological Early Warning System (http://www.agmet.kr). The current process of weather estimation is operated on high-performance multi-core CPUs that have 8 physical cores and 16 logical threads. Nonetheless, the server is not even dedicated to the handling of a single county, indicating that very high overhead is involved in calculating the 10 counties of the Seomjin River Basin. In order to reduce such overhead, several cache and parallelization techniques were used to measure the performance and to check the applicability. Results are as follows: (1) for simple calculations such as Growing Degree Days accumulation, the time required for Input and Output (I/O) is significantly greater than that for calculation, suggesting the need of a technique which reduces disk I/O bottlenecks; (2) when there are many I/O, it is advantageous to distribute them on several servers. However, each server must have a cache for input data so that it does not compete for the same resource; and (3) GPU-based parallel processing method is most suitable for models such as PRISM with large computation loads.

Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea (난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형)

  • Hur, Seung-Oh;Moon, Kyung-Hwan;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Lim, Han-Cheol;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.329-333
    • /
    • 2006
  • Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

Estimation of potential distribution of sweet potato weevil (Cylas formicarius) and climate change impact using MaxEnt (MaxEnt를 활용한 개미바구미(Cylas formicarius)의 잠재 분포와 기후변화 영향 모의)

  • Jinsol Hong;Heewon Hong;Sumin Pi;Soohyun Lee;Jae Ha Shin;Yongeun Kim;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.505-518
    • /
    • 2023
  • The key to invasive pest management lies in preemptive action. However, most current research using species distribution models is conducted after an invasion has occurred. This study modeled the potential distribution of the globally notorious sweet potato pest, the sweet potato weevil(Cylas formicarius), that has not yet invaded Korea using MaxEnt. Using global occurrence data, bioclimatic variables, and topsoil characteristics, MaxEnt showed high explanatory power as both the training and test areas under the curve exceeded 0.9. Among the environmental variables used in this study, minimum temperature in the coldest month (BIO06), precipitation in the driest month (BIO14), mean diurnal range (BIO02), and bulk density (BDOD) were identified as key variables. The predicted global distribution showed high values in most countries where the species is currently present, with a significant potential invasion risk in most South American countries where C. formicarius is not yet present. In Korea, Jeju Island and the southwestern coasts of Jeollanam-do showed very high probabilities. The impact of climate change under shared socioeconomic pathway (SSP) scenarios indicated an expansion along coasts as climate change progresses. By applying the 10th percentile minimum training presence rule, the potential area of occurrence was estimated at 1,439 km2 under current climate conditions and could expand up to 9,485 km2 under the SSP585 scenario. However, the model predicted that an inland invasion would not be serious. The results of this study suggest a need to focus on the risk of invasion in islands and coastal areas.

Analyses of the Efficiency in Hospital Management (병원 단위비용 결정요인에 관한 연구)

  • Ro, Kong-Kyun;Lee, Seon
    • Korea Journal of Hospital Management
    • /
    • v.9 no.1
    • /
    • pp.66-94
    • /
    • 2004
  • The objective of this study is to examine how to maximize the efficiency of hospital management by minimizing the unit cost of hospital operation. For this purpose, this paper proposes to develop a model of the profit maximization based on the cost minimization dictum using the statistical tools of arriving at the maximum likelihood values. The preliminary survey data are collected from the annual statistics and their analyses published by Korea Health Industry Development Institute and Korean Hospital Association. The maximum likelihood value statistical analyses are conducted from the information on the cost (function) of each of 36 hospitals selected by the random stratified sampling method according to the size and location (urban or rural) of hospitals. We believe that, although the size of sample is relatively small, because of the sampling method used and the high response rate, the power of estimation of the results of the statistical analyses of the sample hospitals is acceptable. The conceptual framework of analyses is adopted from the various models of the determinants of hospital costs used by the previous studies. According to this framework, the study postulates that the unit cost of hospital operation is determined by the size, scope of service, technology (production function) as measured by capacity utilization, labor capital ratio and labor input-mix variables, and by exogeneous variables. The variables to represent the above cost determinants are selected by using the step-wise regression so that only the statistically significant variables may be utilized in analyzing how these variables impact on the hospital unit cost. The results of the analyses show that the models of hospital cost determinants adopted are well chosen. The various models analyzed have the (goodness of fit) overall determination (R2) which all turned out to be significant, regardless of the variables put in to represent the cost determinants. Specifically, the size and scope of service, no matter how it is measured, i. e., number of admissions per bed, number of ambulatory visits per bed, adjusted inpatient days and adjusted outpatients, have overall effects of reducing the hospital unit costs as measured by the cost per admission, per inpatient day, or office visit implying the existence of the economy of scale in the hospital operation. Thirdly, the technology used in operating a hospital has turned out to have its ramifications on the hospital unit cost similar to those postulated in the static theory of the firm. For example, the capacity utilization as represented by the inpatient days per employee tuned out to have statistically significant negative impacts on the unit cost of hospital operation, while payroll expenses per inpatient cost has a positive effect. The input-mix of hospital operation, as represented by the ratio of the number of doctor, nurse or medical staff per general employee, supports the known thesis that the specialized manpower costs more than the general employees. The labor/capital ratio as represented by the employees per 100 beds is shown to have a positive effect on the cost as expected. As for the exogeneous variable's impacts on the cost, when this variable is represented by the percent of urban 100 population at the location where the hospital is located, the regression analysis shows that the hospitals located in the urban area have a higher cost than those in the rural area. Finally, the case study of the sample hospitals offers a specific information to hospital administrators about how they share in terms of the cost they are incurring in comparison to other hospitals. For example, if his/her hospital is of small size and located in a city, he/she can compare the various costs of his/her hospital operation with those of other similar hospitals. Therefore, he/she may be able to find the reasons why the cost of his/her hospital operation has a higher or lower cost than other similar hospitals in what factors of the hospital cost determinants.

  • PDF

Prediction of Nitrate Contamination of Groundwater in the Northern Nonsan area Using Multiple Regression Analysis (다중 회귀 분석을 이용한 논산 북부 지역 지하수의 질산성 질소 오염 예측)

  • Kim, Eun-Young;Koh, Dong-Chan;Ko, Kyung-Seok;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.57-73
    • /
    • 2008
  • Nitrate concentrations were measured up to 49 mg/L (as $NO_3$-N) and 22% of the samples exceeded drinking water standard in shallow and bedrock groundwater of the northern Nonsan area. Nitrate concentrations showed a significant difference among land use groups. To predict nitrate concentration in groundwater, multiple regression analysis was carried out using hydrogeologic parameters of soil media, topography and land use which were categorized as several groups, well depth and altitude, and field parameters of temperature, pH, DO and EC. Hydrogeologic parameters were quantified as area proportions of each category within circular buffers centering at wells. Regression was performed to all the combination of variables and the most relevant model was selected based on adjusted coefficient of determination (Adj. $R^2$). Regression using hydrogelogic parameters with varying buffer radii show highest Adj. $R^2$ at 50m and 300m for shallow and bedrock groundwater, respectively. Shallow groundwater has higher Adj. $R^2$ than bedrock groundwater indicating higher susceptibility to hydrogeologic properties of surface environment near the well. Land use and soil media was major explanatory variables for shallow and bedrock groundwater, respectively and residential area was a major variable in both shallow and bedrock groundwater. Regression involving hydrogeologic parameters and field parameters showed that EC, paddy and pH were major variables in shallow groundwater whereas DO, EC and natural area were in bedrock groundwater. Field parameters have much higher explanatory power over the hydrogeologic parameters suggesting field parameters which are routinely measured can provide important information on each well in assessment of nitrate contamination. The most relevant buffer radii can be applied to estimation of travel time of contaminants in surface environment to wells.