• Title/Summary/Keyword: Power Equipment

Search Result 4,056, Processing Time 0.028 seconds

Acoustic Power Measurement System of Array Probes for Ultrasonic Diagnostic Equipment Using Radiation Force Balance Methods (방사힘 측정법을 이용한 초음파 진단장치용 배열 탐침자의 음향파워 측정시스템)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.355-364
    • /
    • 2010
  • Considering biological safety, it is very important to measure acoustic power from ultrasonic array probe for diagnostic ultrasound imaging applications. In this paper, to measure acoustic power from each element on array probe for ultrasonic diagnostic equipment, we reconstruct and automate the acoustic power measurement system. The acoustic power from linear, phased and curved array were measured and analyzed. As a result of measurement, the effects caused by directivity of sound beam from curved array were founded. To remove these effects, we developed and applied the correction model. The proposed system is useful to evaluate characteristics of the acoustical output power of array probe.

Partial Discharge Process and Characteristics of Oil-Paper Insulation under Pulsating DC Voltage

  • Bao, Lianwei;Li, Jian;Zhang, Jing;Jiang, Tianyan;Li, Xudong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.436-444
    • /
    • 2016
  • Oil-paper insulation of valve-side windings in converter transformers withstand electrical stresses combining with AC, DC and strong harmonic components. This paper presents the physical mechanisms and experimental researches on partial discharge (PD) of oil-paper insulation at pulsating DC voltage. Theoretical analysis showed that the phase-resolved distributions of PDs generated from different insulated models varied as the increase of the applied voltages following a certain rule. Four artificial insulation defect models were designed to generate PD signals at pulsating DC voltages. Theoretical statements and experimental results show that the PD pulses first appear at the maximum value of the applied pulsating DC voltage, and the resolved PD phase distribution became wider as the applied voltage increased. The PD phase-resolved distributions generated from the different discharge models are also different in the phase-resolved distributions and development progress. It implies that the theoretical analysis is suitable for interpretation of PD at pulsating DC voltage.

Suppression of Glow Corona on Streamer and Influence of Thin Wire on its Inception

  • Sima, Wenxia;Fan, Shuochao;Yang, Qing;Wang, Qi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1759-1764
    • /
    • 2015
  • Glow corona is a kind of streamer-free corona that can suppress upward leaders in transmission lines. Thus, it has good application potential in lightning protection. This paper investigates its corona characteristics. The suppression characteristic of glow corona on streamer is studied in air gap under negative DC voltage by wrapping thin wires on the electrode. The effect of thin wire winding patterns on the gap breakdown voltage is analyzed. Results are considered to be attributed to the inception condition of glow corona. Thus an inception test of glow corona is also conducted, and the inception voltage is obtained. Results show that the inception voltage decreases with short winding pitch. Thus an investigation on the inception of glow corona influenced by thin wire is conducted, and an influential factor is proposed to evaluate the influence. The inception regular of thin wire glow corona presented in this paper has certain reference value for the application of glow corona in transmission lines.

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.

Investigation on Oil-paper Degradation Subjected to Partial Discharge Using Chaos Theory

  • Gao, Jun;Wang, Youyuan;Liao, Ruijin;Wang, Ke;Yuan, Lei;Zhang, Yiyi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1686-1693
    • /
    • 2014
  • In this paper, oil-paper samples composed of transformer windings were used to investigate the insulation degradation process subjected to partial discharge (PD), with artificial defects inside to simulate the PD induced insulation degradation. To determine appropriate test voltages, the breakdown time obtained through a group of accelerated electrical degradation tests under high voltages was firstly fitted by two-parameter Weibull model to acquire the average breakdown time, which was then applied to establish the inverse power law life model to choose advisable test voltages. During the electrical degradation process, PD signals were synchronously detected by an ultra-high frequency (UHF) sensor from inception to breakdown. For PD analysis, the whole degradation process was divided into ten stages, and chaos theory was introduced to analyze the variation of three chaotic parameters with the development of electrical degradation, namely the largest Lyapunov exponent, correlation dimension and Komogorov entropy of PD amplitude time series. It is shown that deterministic chaos of PD is confirmed during the oil-paper degradation process, and the obtained results provide a new effective tool for the diagnosis of degradation of oil-paper insulation subjected to PD.

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

Development of Turbine Rotor Bending Straightening Numerical Model using the High Frequency Heating Equipment (고주파 가열 장비를 활용한 터빈로터 휨 교정수식모델 개발)

  • Park, Junsu;Hyun, Jungseob;Park, Hyunku;Park, Kwangha
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • The turbine rotor, one of the main facilities in a power plant, it generates electricity while rotating at 3600 RPM. Because it rotates at high speed, it requires careful management because high vibration occurs even if it is deformed by only 0.1mm. However, bending occurs due to various causes during turbine operating. If turbine rotor bending occurs, the power plant must be stopped and repaired. In the past, straightening was carried out using a heating torch and furnace in the field. In case of straightening in this way, it is impossible to proceed systematically, so damage to the turbine rotor may occur and take long period for maintenance. Long maintenance period causes excessive cost, so it is necessary to straighten the rotor by minimizing damage to the rotor in a short period of time. To solve this problem, we developed a turbine rotor straightening equipment using high-frequency induction heating equipment. A straightening was validated for 500MW HIP rotor, and the optimal parameters for straightening were selected. In addition, based on the experimental results, finite element analysis was performed to build a database. Using the database, a straightening amount prediction model available for rotor straightening was developed. Using the developed straightening equipment and straightening prediction model, it is possible to straightening the rotor with minimized damage to the rotor in a short period of time.