• Title/Summary/Keyword: Power Detection System

Search Result 1,409, Processing Time 0.032 seconds

The Detection of Promising R&D Fields m OLED Illumination Industry (OLED 조명산업 내 R&D 유망 분야 발굴)

  • Sim, Jin-Bo;Kim, You-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1403-1412
    • /
    • 2011
  • This study performed a detecting research of promising R&D field utilizing intuitive methodology regarding OLED illumination industry. For this, 69 professionals of the illumination industry in Korea were composed as a panel to hold an in-depth interview and survey for 1 month. The study classified the OLED illumination industry as 4 fields of panel, material/component for panel, manufacturing equipment, and lighting system, and selected core technology for each field, and divided it into a total of 14 possible fields for R&D. As a result of evaluating the technological competitive power for each field, the field in Korea which received the highest technological competitive power was OLED panel, and contrarily, technological competitive power of material/component for OLED panel showed the lowest, which requires improvement Meanwhile, evaluating economical aspect, conformity to policy, and effectiveness of R&D in general, 7 promising R&D fields were selected. The 4 core technologies of OLED panel, which are, white, transparent, color change and flexible OLED manufacturing technology were evaluated as the most promising fields, and next, organic material for surface light source, material/component for substrate and equipment for forming large sized substrate were evaluated as promising fields.

Energy Efficient Spectrum Sensing for Ad-hoc Cognitive Radio (애드혹 인지무선시스템을 위한 효과적 에너지 검출 방식)

  • Lee, So-Young;Kim, Eun-Cheol;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.113-119
    • /
    • 2010
  • Wireless ad hoc network composed of low power devices has been operated in ISM bands. However, with the growing proliferation of wireless services, these bands are increasingly getting congested. In order to relieve the spectrum scarcity and inefficient spectrum utilization, ad ho cognitive radio was proposed. In this paper we propose the efficient spectrum sensing method to reduce power consumption and detect white space in ad hoc cognitive radio system. The wireless channel between a licensed user and CR systems is modeled as Gaussian channel, the distance between a licensed user and CR systems is assumed differently. Also, the wireless channel among CR systems is assumed as the perfect channel and the distance among CR systems is assumed close distance. CR systems sense the spectrum of the licensed user by using a energy detection method. From the simulation results, spectrum sensing performance of combining sensing result of CR systems with high received energy shows higher than combining sensing result of all CR systems and we can refer to the proposed sensing method in order to perform effective spectrum sensing with low power consumption.

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection

  • Blin, Stephane;Tohme, Lucie;Coquillat, Dominique;Horiguchi, Shogo;Minamikata, Yusuke;Hisatake, Shintaro;Nouvel, Philippe;Cohen, Thomas;Penarier, Annick;Cano, Fabrice;Varani, Luca;Knap, Wojciech;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.559-568
    • /
    • 2013
  • We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.

Design and Fabrication of Rogowski-type Partial Discharge Sensor for Insulation Diagnosis of Cast-Resin Transformers (몰드 변압기의 절연 진단을 위한 로고우스키형 부분방전 센서의 설계 및 제작)

  • Lee, Gyeong-Yeol;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.594-602
    • /
    • 2022
  • Cast-resin transformers are widely installed in various electrical power systems because of their low operating cost and low influence on external environmental factors. However, when they have an internal defect during the manufacturing process or operation, a partial discharge (PD) occurs, and eventually destroys the insulation. In this paper, a Rogowski-type PD sensor was studied to replace commercial PD sensors used for the insulation diagnosis of power apparatus. The proposed PD sensor was manufactured with four different types of PCB-based winding structures, and it was analyzed in terms of the detection characteristics for standard calibration pulses and the changes of the output voltage according to the distance. The output increased linearly in accordance with the applied discharge amount. It was confirmed that the hexagon structure sensor had the highest sensitivity, because the winding cross-sectional area of the sensor was larger than others. In addition, as the distance from the defect increased, the output voltage of the sensors decreased by 7.32% on average. It was also confirmed that the attenuation rate according to the distance decreased as the input discharge amount increased. For the application of this new type sensor, PD electrode system was designed to simulate the void defect. Waveforms and PRPD patterns measured by the proposed PD sensors at DIV and 120% of DIV were the same as the results measured by MPD 600 based on IEC 60270. The proposed PD sensors can be installed on the inner wall of the transformer tank by coating its surfaces with a non-conductive material; therefore, it is possible to detect internal defects more effectively at a closer distance from the defect than the conventional sensors.

Efficient Multi-spot Monitoring System Using PTZ Camera and Wireless Sensor Network (PTZ 카메라와 무선 센서 네트워크를 이용한 효율적인 다중 지역 절전형 모니터링 시스템)

  • Seo, Dong-kyu;Son, Cheol-su;Yang, Su-yeong;Cho, Byung-lok;Kim, Won-jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.581-584
    • /
    • 2009
  • Recently, the cameras which used for observation are installed in children protection area and local crime prevention area in order to protect life and property and by its work being recognized and are installed more. Normal cameras have cost problem to observe multiple area and detail, because they can observe only one place. PTZ camera can observe multiple area by moving focus by schedule or remote control, but it can't automatically move the focus of it to the place where event occurred, because it can't recognize the place. In this study, we can monitor multiple area effectively, by installing a wireless sensor node equipped with temperature, lighting, gas and human detection sensor to each area, to monitor many place low-price and actively and to move the focus of PTZ camera to preset position, and send recorded video to the user, when the various sensor data received from wireless sensors in observation area are to be determined abnormal by analyzing. In addition, at night we can record a scene using infrared, but to reduce power consumption of lighting system which are installed to improve resolution, it supplies power to the lighting system when event occurred. So we were able to implement low power green monitoring system.

  • PDF

Design of Idle-time Measurement System for Data Spoofing Detection (데이터 스푸핑 탐지를 위한 유휴 시간 측정 시스템 설계)

  • Jung, Sung-Mo;Song, Jae-Gu;Kim, Tai-Hoon;So, Yo-Hwan;Kim, Seok-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.151-158
    • /
    • 2010
  • The industrial foundation of the inside and outside of a country has brought significant damages due to attacks from hackers. Especially, if the national primary core infrastructures(like electric power, dam, railroad, atomic energy, etc.) has been significantly damaged, it can be directly linked not only to economic problems but also to people's lives. These national primary core infrastructures usually constitute SCADA system using Modbus RS486 communication. Because of this characteristic, SCADA system has RTU master and slave linked to RJ11 cables to directly pass commands. RJ11 is possible in data spoofing using physical connection because the transmission range of RJ11 has a wide bandwidth(almost 1km). Hence, this paper designed an idle-time measurement system for SCADA system for emerging security improvement in the national primary core infrastructures.

Simplified PAR Reduction Technique for MIMO-OFDM System (MIMO-OFDM 시스템에서 간략화된 PAR 감쇄 기법)

  • Song Hyoung-Kyu;Kook Hyung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1181-1185
    • /
    • 2005
  • A combining of MIMO signal processing with OFDM is regarded as a promising solution of enhancing the performance of next generation wireless system. Therefore, in this paper, an OFDM-based wireless system employing layered space-time architecture is considered for a high-rate transmission. In the MIMO-OFDM system, we evaluate the PAR performance using the SLM approaches. The investigated SLM scheme for MIMO-OFDM signals selects the transmitted sequence with lowest average PAR over all transmitting antennas and retrieves the side information very accurately at the expense of a slight degradation of the PAR performance. The low probability of false side information can improve the overall detection performance of the MIMO-OFDM system with erroneous side information compared to the ordinary SLM approache, respectively. Also, we provide closed form of the average BER performance in MIMO-OFDM system using analytic approach.

Design of the Blood Pressure Measurement System Using the Inflatable Oscillometric Method (가압식 오실로메트릭 방법을 사용한 혈압측정 시스템의 설계)

  • 노동곤;이윤선;지정호;박성빈;이계형;김해관
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.281-286
    • /
    • 2003
  • Blood Pressure is one of the most fundamental Parameters which reflects physical conditions medically and the blood pressure measurement system using oscillometric method is a Non-Invasive Blood Pressure measurement device by measuring arterial Pressure through a cuff. In this paper. we designed a inflatable wrist blood pressure system which measures blood Pressure during the stepping inflation in the wrist cuff. The hardware system consists of a main power unit, a bladder in cuff unit, signal detection units, signal Processing units. a wireless data transmission unit, and a data display unit. We evaluated the reliability of this system by comparing and analyzing systolic. diastolic blood Pressure, and heart rate with other commercial blood Pressure measurement devices. Characteristic ratio values used to determine systolic and diastolic blood Pressure using MAA(Maximum Amplitude Algorithm) were 0.436 and 0.671 respectively.

Eigenvalue Analysis and Detection of Low Frequency Oscillation using PMU Data in KEPCO System (위상동기신호를 이용한 한전계통의 저주파진동 검출과 고유치해석)

  • Shim, Kwan-Shik;Kim, Sang-Tae;Kim, Tae-Kyun;Ahn, Seon-Ju;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.261-284
    • /
    • 2017
  • This paper describes the results of a low-frequency oscillation analysis using data measured in PMU installed in the KEPCO system, and the comparison with eigenvalues computed from the linear model. The dominant oscillation modes are estimated by applying various algorithms. The algorithms are: the extended Prony method; multiple time interval parameter estimation method; subspace system identification method; and spectral analysis. From the measurement data, modes of frequency 0.68[Hz] and 0.92[Hz] were estimated, and modes of frequency 0.63[Hz] and 0.80[Hz] were computed from the eigenvalue calculation. There was a difference between the mode estimated from measurement data and that from the linear model. This is possibly because of an error in the dynamic data of the KEPCO system used in eigenvalue calculation. Because wide area modes exist in the KEPCO system, these modes should be monitored continuously for the reliable operation of the system. In order to prevent total blackouts caused by wide area oscillation, moreover, contingency analysis should be performed in relation to this mode and appropriate measures should be established.

Development of On-axis Raman Lidar System for Remotely Measuring Hydrogen Gas at Long Distance (원거리 수소 가스 원격 계측을 위한 On-axis 라만 라이다 장치 개발)

  • Choi, In Young;Baik, Sung Hoon;Lim, Jae Young;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Hydrogen gas is an important and promising energy resource that has no emissions of pollutants during power generation. However, hydrogen gas is very dangerous because it is colorless, odorless, highly flammable, and explosive at low concentration. Conventional techniques for hydrogen gas detection are very difficult for measuring the hydrogen gas distribution at long distances, because they sample the gas to measure its concentration. Raman lidar is one of the techniques for remotely detecting hydrogen gas and measuring the range of the hydrogen gas distribution. A Raman lidar system with an on-axis optical receiver was developed to improve the range of hydrogen gas detection at long distance. To verify the accuracy and improvement in the range of detecting the hydrogen gas, experiments measuring the hydrogen gas concentration are carried out using the developed on-axis Raman lidar system and a gas chamber, to prevent explosion of the hydrogen gas. As a result, our developed on-axis Raman lidar system can measure a minimum hydrogen gas concentration of 0.66 volume percent at a distance of 50 m.