• Title/Summary/Keyword: Power Consumption Information

Search Result 2,468, Processing Time 0.029 seconds

Dynamic Voltage Scaling Using Average Execution Time in Real Time Systems (실시간 시스템에서 태스크별 평균 실행 시간을 활용한 동적 전압 조절 방법)

  • 방철원;김용석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1379-1382
    • /
    • 2003
  • Recently, mobile embedded systems used widly in various applications. Managing power consumption is becoming a matter of primary concern because those systems use limited power supply. As an approach reduce power consumption, voltage can be scaled down. according to the execution time and deadline. By reducing the supplying voltage to 1/N power consumption can be reduced to 1/N. DPM-S is a well known method for dynamic voltage scaling. In this paper, we enhanced DPM-S by using average execution time aggressively. The frequency of processor is calculated based in average execution time instead of worst case execution time. Simulation results show that our method achieve up to 5% energy savings than DPM-S.

  • PDF

Reducing Power Consumption of a Scheduling for Module Selection under the Time Constraint (시간 제약 조건하에서의 모듈 선택을 고려한 전력감소 스케쥴링)

  • 최지영;박남서;김희석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1153-1156
    • /
    • 2003
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. Traditional high-level synthesis do not allow reuse of complex, realistic datapath component during the task of scheduling. On the other hand, the proposed scheduling of reducing power consumption is able to approach a productivity of the design the low power to reuse which given a library of user-defined datapath component and to share of resource sharing on the switching activity in a shared resource. Also, we are obtainable the optimal the scheduling result in experimental results of our approach various HLS benchmark environment using chaining and multi-cycling in the scheduling techniques..

  • PDF

Performance Evaluation of Distributed MAC Protocol Algorithm for Efficient Multimedia Transmission (효율적인 멀티미디어 전송을 위한 분산방식 MAC 프로토콜 성능분석)

  • Kim, Jin Woo;Lee, Seong Ro
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.5
    • /
    • pp.573-581
    • /
    • 2014
  • The salient features of UWB(Ultra WideBand) networks such as high-rate communications, low interference with other radio systems, and low power consumption bring many benefits to users, thus enabling several new applications such as wireless universal serial bus (WUSB) for connecting personal computers (PCs) to their peripherals and the consumer-electronics (CE) in people's living rooms. Because the size of multimedia data frame, WiMedia device must transmit the fragment of MSDU. However, when the fragment of MSDU is lost, WiMedia device maintains active mode for the time to complete the transmission MSDU, and there is a problem that unnecessary power consumption occurs. Therefore we propose new power management scheme to reduce unnecessary power consumption of WiMedia devices in the case that the fragment is lost.

Energy-Efficient Traffic Grooming in Bandwidth Constrained IP over WDM Networks

  • Chen, Bin;Yang, Zijian;Lin, Rongping;Dai, Mingjun;Lin, Xiaohui;Su, Gongchao;Wang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2711-2733
    • /
    • 2018
  • Minimizing power consumption in bandwidth limited optical traffic grooming networks is presented as a two-objective optimization problem. Since the main objective is to route a connection, the network throughput is maximized first, and then the minimum power consumption solution is found for this maximized throughput. Both transparent IP over WDM (Tp-IPoWDM) and translucent IP over WDM (Tl-IPoWDM) network may be applied to examine such bi-objective algorithms. Simulations show that the bi-objective algorithms are more energy-efficient than the single objective algorithms where only the throughput is optimized. For a Tp-IPoWDM network, both link based ILP (LB-ILP) and path based ILP (PB-ILP) methods are formulated and solved. Simulation results show that PB-ILP can save more power than LB-ILP because PB-ILP has more path selections when lightpath lengths are limited. For a Tl-IPoWDM network, only PB-ILP is formulated and we show that the Tl-IPoWDM network consumes less energy than the Tp-IPoWDM network, especially under a sparse network topology. For both kinds of networks, it is shown that network energy efficiency can be improved by over-provisioning wavelengths, which gives the network more path choices.

New Encoding Method for Low Power Sequential Access ROMs

  • Cho, Seong-Ik;Jung, Ki-Sang;Kim, Sung-Mi;You, Namhee;Lee, Jong-Yeol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.443-450
    • /
    • 2013
  • This paper propose a new ROM data encoding method that takes into account of a sequential access pattern to reduce the power consumption in ROMs used in applications such as FIR filters that access the ROM sequentially. In the proposed encoding method, the number of 1's, of which the increment leads to the increase of the power consumption, is reduced by applying an exclusive-or (XOR) operation to a bit pair composed of two consecutive bits in a bit line. The encoded data can be decoded by using XOR gates and D flip-flops, which are usually used in digital systems for synchronization and glitch suppression. By applying the proposed encoding method to coefficient ROMs of FIR filters designed by using various design methods, we can achieve average reduction of 43.7% over the unencoded original data in the power consumption, which is larger reduction than those achieved by previous methods.

Test Scheduling Algorithm of System-on-a-Chip Using Extended Tree Growing Graph (확장 나무성장 그래프를 이용한 시스템 온 칩의 테스트 스케줄링 알고리듬)

  • 박진성;이재민
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.3
    • /
    • pp.93-100
    • /
    • 2004
  • Test scheduling of SoC (System-on-a-chip) is very important because it is one of the prime methods to minimize the testing time under limited power consumption of SoC. In this paper, a heuristic algorithm, in which test resources are selected for groups and arranged based on the size of product of power dissipation and test time together with total power consumption in core-based SoC is proposed. We select test resource groups which has maximum power consumption but does not exceed the constrained power consumption and make the testing time slot of resources in the test resource group to be aligned at the initial position in test space to minimize the idling test time of test resources. The efficiency of proposed algorithm is confirmed by experiment using ITC02 benchmarks.

Analysis of Energy Consumption and Sleeping Protocols in PHY-MAC for UWB Networks

  • Khan, M.A.;Parvez, A.Al;Hoque, M.E.;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12B
    • /
    • pp.1028-1036
    • /
    • 2006
  • Energy conservation is an important issue in wireless networks, especially for self-organized, low power, low data-rate impulse-radio ultra-wideband (IR-UWB) networks, where every node is a battery-driven device. To conserve energy, it is necessary to turn node into sleep state when no data exist. This paper addresses the energy consumption analysis of Direct-Sequence (DS) versus Time-Hopping (TH) multiple accesses and two kinds of sleeping protocols (slotted and unslotted) in PHY-MAC for Un networks. We introduce an analytical model for energy consumption or a node in both TH and DS multiple accesses and evaluate the energy consumption comparison between them and also the performance of the proposed sleeping protocols. Simulation results show that the energy consumption per packet of DS case is less than TH case and for slotted sleeping is less than that of unslotted one for bursty load case, but with respect to the load access delay unslotted one consumes less energy, that maximize node lifetime.

QoS-Aware Power Management of Mobile Games with High-Load Threads (CPU 부하가 큰 쓰레드를 가진 모바일 게임에서 QoS를 고려한 전력관리 기법)

  • Kim, Minsung;Kim, Jihong
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.328-333
    • /
    • 2017
  • Mobile game apps, which are popular in various mobile devices, tend to be power-hungry and rapidly drain the device's battery. Since a long battery lifetime is a key design requirement of mobile devices, reducing the power consumption of mobile game apps has become an important research topic. In this paper, we investigate the power consumption characteristics of popular mobile games with multiple threads, focusing on the inter-thread. From our power measurement study of popular mobile game apps, we observed that some of these apps have abnormally high-load threads that barely affect the user's gaming experience, despite the high energy consumption. In order to reduce the wasted power from these abnormal threads, we propose a novel technique that detects such abnormal threads during run time and reduces their power consumption without degrading user experience. Our experimental results on an Android smartphone show that the proposed technique can reduce the energy consumption of mobile game apps by up to 58% without any negative impact on the user's gaming experience.

Efficient Flash Memory Access Power Reduction Techniques for IoT-Driven Rare-Event Logging Application (IoT 기반 간헐적 이벤트 로깅 응용에 최적화된 효율적 플래시 메모리 전력 소모 감소기법)

  • Kwon, Jisu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Low power issue is one of the most critical problems in the Internet of Things (IoT), which are powered by battery. To solve this problem, various approaches have been presented so far. In this paper, we propose a method to reduce the power consumption by reducing the numbers of accesses into the flash memory consuming a large amount of power for on-chip software execution. Our approach is based on using cooperative logging structure to distribute the sampling overhead in single sensor node to adjacent nodes in case of rare-event applications. The proposed algorithm to identify event occurrence is newly introduced with negative feedback method by observing difference between past data and recent data coming from the sensor. When an event with need of flash access is determined, the proposed approach only allows access to write the sampled data in flash memory. The proposed event detection algorithm (EDA) result in 30% reduction of power consumption compared to the conventional flash write scheme for all cases of event. The sampled data from the sensor is first traced into the random access memory (RAM), and write access to the flash memory is delayed until the page buffer of the on-chip flash memory controller in the micro controller unit (MCU) is full of the numbers of the traced data, thereby reducing the frequency of accessing flash memory. This technique additionally reduces power consumption by 40% compared to flash-write all data. By sharing the sampling information via LoRa channel, the overhead in sampling data is distributed, to reduce the sampling load on each node, so that the 66% reduction of total power consumption is achieved in several IoT edge nodes by removing the sampling operation of duplicated data.

Analysis of Power Consumption Patterns for Commercial Portable Multimedia Players (상용 휴대형 멀티미디어 재생기 전력소모 패턴 분석)

  • Nam, Young-Jin;Yang, Eun-Ju;Lee, Jong-Yuol;Kim, Seong-Ryul;Seo, Dae-Wha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.95-103
    • /
    • 2007
  • Portable multimedia Player (PMP) devices have been gaining in its popularity with the emerging digital convergence of data, video, audio, etc. Since the PMP devices are typically equipped with DSP, a bigger LCD screen, and a hard disk, efficient power management has become more crucial than the other portable devices. This paper builds up a hardware/software-based power measurement system based on data acquisition devices. Subsequently, it measures and analyzes the power consumed in commercial PMP devices under different types of events: the system boot & shutdown, video playback, and the use of different video-coding types. Finally, our analysis of the measured power consumption patterns reveals useful information for the design of low-power PMP devices.

  • PDF