• Title/Summary/Keyword: Power Consumption Forecasting

Search Result 72, Processing Time 0.023 seconds

A Study on the Load Forecasting Methods of Peak Electricity Demand Controller (최대수요전력 관리 장치의 부하 예측에 관한 연구)

  • Kong, In-Yeup
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, load forecasting of the unit of seconds using the Exponential Smoothing Methods, ARIMA model, Kalman Filter is proposed. Also simulation of load forecasting of the unit of the seconds methods and existing forecasting methods is performed and analyzed the accuracy. As a result of simulation, the accuracy of load forecasting methods in seconds is higher.

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

Analysis of Apartment Power Consumption and Forecast of Power Consumption Based on Deep Learning (공동주택 전력 소비 데이터 분석 및 딥러닝을 사용한 전력 소비 예측)

  • Yoo, Namjo;Lee, Eunae;Chung, Beom Jin;Kim, Dong Sik
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1373-1380
    • /
    • 2019
  • In order to increase energy efficiency, developments of the advanced metering infrastructure (AMI) in the smart grid technology have recently been actively conducted. An essential part of AMI is analyzing power consumption and forecasting consumption patterns. In this paper, we analyze the power consumption and summarized the data errors. Monthly power consumption patterns are also analyzed using the k-means clustering algorithm. Forecasting the consumption pattern by each household is difficult. Therefore, we first classify the data into 100 clusters and then predict the average of the next day as the daily average of the clusters based on the deep neural network. Using practically collected AMI data, we analyzed the data errors and could successfully conducted power forecasting based on a clustering technique.

Short-Term Forecasting of Monthly Maximum Electric Power Loads Using a Winters' Multiplicative Seasonal Model (Winters' Multiplicative Seasonal Model에 의한 월 최대 전력부하의 단기예측)

  • Yang, Moonhee;Lim, Sanggyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.63-75
    • /
    • 2002
  • To improve the efficiency of the electric power generation, monthly maximum electric power consumptions for a next one year should be forecasted in advance and used as the fundamental input to the yearly electric power-generating master plan, which has a greatly influence upon relevant sub-plans successively. In this paper, we analyze the past 22-year hourly maximum electric load data available from KEPCO(Korea Electric Power Corporation) and select necessary data from the raw data for our model in order to reflect more recent trends and seasonal components, which hopefully result in a better forecasting model in terms of forecasted errors. After analyzing the selected data, we recommend to KEPCO the Winters' multiplicative model with decomposition and exponential smoothing technique among many candidate forecasting models and provide forecasts for the electric power consumptions and their 95% confidence intervals up to December of 1999. It turns out that the relative errors of our forecasts over the twelve actual load data are ranged between 0.1% and 6.6% and that the average relative error is only 3.3%. These results indicate that our model, which was accepted as the first statistical forecasting model for monthly maximum power consumption, is very suitable to KEPCO.

Method of Demand Forecasting for Demand Controller (최대수요전력 관리 장치의 최대수요전력 예측 방법에 관한 연구)

  • Kwon, Yong-Hun;Kim, Ho-Jin;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.833-836
    • /
    • 2012
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, examine the existing forecasting method and the exponential smoothing method, and then propose the forecasting method using Kalman Filter algorithm.

  • PDF

Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data (유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법)

  • Moon, Jihoon;Park, Jinwoong;Han, Sanghoon;Hwang, Eenjun
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.954-965
    • /
    • 2017
  • A stable power supply is very important for the maintenance and operation of the power infrastructure. Accurate power consumption prediction is therefore needed. In particular, a university campus is an institution with one of the highest power consumptions and tends to have a wide variation of electrical load depending on time and environment. For this reason, a model that can accurately predict power consumption is required for the effective operation of the power system. The disadvantage of the existing time series prediction technique is that the prediction performance is greatly degraded because the width of the prediction interval increases as the difference between the learning time and the prediction time increases. In this paper, we first classify power data with similar time series patterns considering the date, day of the week, holiday, and semester. Next, each ARIMA model is constructed based on the classified data set and a daily power consumption forecasting method of the university campus is proposed through the time series cross-validation of the predicted time. In order to evaluate the accuracy of the prediction, we confirmed the validity of the proposed method by applying performance indicators.

A Comparison Study on Forecasting Models for Air Compressor Power Consumption (공압기 소비전력에 대한 예측 모형의 비교연구)

  • Juhyeon Kim;Moonsoo Jang;Yejn Kim;Yoseob Heo;Hyunsang Chung;Soyoung Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.657-668
    • /
    • 2023
  • It's important to note that air compressors in the industrial sector are major energy consumers, accounting for a significant portion of total energy costs in manufacturing plants, ranging from 12% to 40%. To address this issue, researchers have compared forecasting models that can predict the power consumption of air compressors. The forecasting models were designed to incorporate variables such as flow rate, pressure, temperature, humidity, and dew point, utilizing statistical methods, machine learning, and deep learning techniques. The model performance was compared using measures such as RMSE, MAE and SMAPE. Out of the 21 models tested, the Elastic Net, a statistical method, proved to be the most effective in power comsumption forecasting.

Development of a Hybrid Exponential Forecasting Model for Household Electric Power Consumption (가정용(家庭用) 전력수요예측(電力需要豫測)을 위(爲)한 혼합지표(混合指表) 모델의 개발(開發))

  • Hwang, Hak;Kim, Jun-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 1981
  • This paper develops a short term forecasting model for household electric power consumption in Seoul, which can be used for the effective planning and control of utility management. The model developed is based on exponentially weighted moving average model and incorporates monthly average temperature as an exogeneous factor so as to enhance its forecasting accuracy. The model is empirically compared with the Winters' three parameter model which is widely used in practice and the Box-Jenkins model known to be one of the most accurate short term forecasting techniques. The result indicates that the developed hybrid exponential model is better in terms of accuracy measured by average forecast error, mean squared error, and autocorrelated error.

  • PDF

An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression (인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법)

  • Moon, Jihoon;Jun, Sanghoon;Park, Jinwoong;Choi, Young-Hwan;Hwang, Eenjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.293-302
    • /
    • 2016
  • Since the electricity is produced and consumed simultaneously, predicting the electric load and securing affordable electric power are necessary for reliable electric power supply. In particular, a university campus is one of the highest power consuming institutions and tends to have a wide variation of electric load depending on time and environment. For these reasons, an accurate electric load forecasting method that can predict power consumption in real-time is required for efficient power supply and management. Even though various influencing factors of power consumption have been discovered for the educational institutions by analyzing power consumption patterns and usage cases, further studies are required for the quantitative prediction of electric load. In this paper, we build an electric load forecasting model by implementing and evaluating various machine learning algorithms. To do that, we consider three building clusters in a campus and collect their power consumption every 15 minutes for more than one year. In the preprocessing, features are represented by considering periodic characteristic of the data and principal component analysis is performed for the features. In order to train the electric load forecasting model, we employ both artificial neural network and support vector machine. We evaluate the prediction performance of each forecasting model by 5-fold cross-validation and compare the prediction result to real electric load.

Forecasting of Electricity Demand for Fishing Industry Based on Genetic Algorithm approach (유전자 알고리즘에 기반한 수산업 전력 수요 예측에 관한 연구)

  • Kim, Heung-Soe;Lee, Sung-Geun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2017
  • Energy is a vital resource for the economic growth and the social development for any country. As the industry becomes more sophisticated and the economy more grows, the electricity demand is increasing. So forecasting electricity demand is an important for electricity suppliers. Forecasting electricity demand makes it possible to distribute electricity demand. As the market for Negawatt market began to grow in Korea from 2014, the prediction of electricity consumption demand becomes more important. Moreover, power consumption forecasting provides a way for demand management to be directly or indirectly participated by consumers in the electricity market. We use Genetic Algorithms to predict the energy demand of the fishing industry in Jeju Island by using GDP, per capita gross national income, value add, and domestic electricity consumption from 1999 to 2011. Genetic Algorithm is useful for finding optimal solutions in various fields. In this paper, genetic algorithm finds optimal parameters. The objective is to find the optimal value of the coefficients used to predict the electricity demand and to minimize the error rate between the predicted value and the actual power consumption values.