• Title/Summary/Keyword: Power Circuit Design

Search Result 2,270, Processing Time 0.024 seconds

A Design of Standing Human Body Sensing System Using Rotation of a PIR Sensor (초전형 적외선 센서 회전방식을 이용한 정지 인체 감지 시스템에 관한 연구)

  • Cha, Hyeong-Woo;Cho, Min-Yyeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.129-136
    • /
    • 2016
  • A novel sensing system for standing and moving human body using PIR(pyroelectric infrared) sensor was development. The system consists of power supply, interface circuit of PIR sensor, small stepping motor, and digital control. The detecting principle for stop human body is detecting the human body when the stepping motor sticking the PIR sensor and the fresnel lens has rotated by 180 degree at six second and has stopped the motor for no detecting signal of human body. We developed control algorism for proposed the detection system. The experimentation shows that the detector system had detected length and angle were 6m and 30 degree against as standing and moving human body with $37^{\circ}C$.

Development of a Concrete Pump Truck's Core Pump Model and Its Validation (콘크리트 펌프트럭의 코어펌프 해석모델개발 및 신뢰성 검토)

  • Park, Sung Su;Noh, Dae Kyung;Lee, Geun Ho;Lee, Dae Hee;Jang, Ju Sup
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • This study is a first step toward reducing surge pressure, and it has another purpose, which is to developing an analysis model which can closely analyze a hydraulic circuit and be used in design. For development of analysis model, SimulationX, a commercial program, is used. The study progress methods are as follows. By analyzing the structure and operating mechanisms of each part of the hydraulic system of the pump truck and referring its parameters, develop a single component model. Assemble the developed single component model, and make an overall analysis the model. By comparing the similarities between the developed model and the actual system's test results, validate the reliability of the analysis model.

Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator (굴삭기 IMV용 비례전자밸브의 동특성)

  • Kang, Chang Nam;Yun, So Nam;Jeong, Hwang Hoon;Kim, Moon Gon
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.

A 12-bit 1MS/s SAR ADC with Rail-to-Rail Input Range (Rail-to-Rail의 입력 신호 범위를 가지는 12-bit 1MS/s 축차비교형 아날로그-디지털 변환기)

  • Kim, Doo-Yeoun;Jung, Jae-Jin;Lim, Shin-Il;Kim, Su-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.355-358
    • /
    • 2010
  • As CMOS technology continues to scale down, signal processing is favorably done in the digital domain, which requires Analog-to-Digital (A/D) Converter to be integrated on-chip. This paper presents a design methodology of 12-bit 1-MS/s Rail-to-Rail fully differential SAR ADC using Deep N-well Switch based on binary search algorithm. Proposed A/D Converter has the following architecture and techniques. Firstly, chip size and power consumption is reduced due to split capacitor array architecture and charge recycling method. Secondly, fully differential architecture is used to reduce noise between the digital part and converters. Finally, to reduce the mismatch effect and noise error, the circuit is designed to be available for Rail-to-Rail input range using simple Deep N-well switch. The A/D Converter fabricated in a TSMC 0.18um 1P6M CMOS technology and has a Signal-to-Noise-and-Distortion-Ratio(SNDR) of 69 dB and Free-Dynamic-Range (SFDR) of 73 dB. The occupied active area is $0.6mm^2$.

Measurement of Transient Current by using the Rogowski Coil (로고우스키코일을 이용한 과도전류의 측정)

  • 이복희;길경석;정승수;정상진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1206-1213
    • /
    • 1994
  • This paper presents the operation principle and design rule of the Rogowski coil which can measure the transient current and describes the calibration and application experimental results for performance evaluation. It is obtained that the response curves of the Robowski coil with the turns of 300 and the passive integrator to sinusoidal input give a good linearity up to the frequency of 500 [kHz] and the current measurement system gaving the Rogowski coil is the frequency bandwidth of 40 [Hz]~700 [kHz]. As an application experiment for the fabricated modeling power transmission line, the impulse current, which limitates the direct lightning return stroke to overhead ground wire, is measured by the Rogowski coil and its fast Fourier transformation is carried out. The equivalent circuit of the Rogowski coil considering the stray capacitances is proposed, and the theoretical analysis is in good agreement with the measurement results. Also, it is found that for high frequency domain the stray capacitance such as a distributed capacitance to the shield and the capacitance between windings of coil should be considered in designing the Rogowski coils since the resonance originates from the stray capacitance and the self-inductance of the Rogowski coil.

  • PDF

A Study of the Life Characteristic of Hydraulic Hose Assembly by Adopting Temperature-Nonthermal Acceleration Model (온도.비열 가속모형을 적용한 유압호스조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Sim, Sung-Bo;Kim, Jae-Hoon
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • Hydraulic hose assemblies deliver a fluid power in various oil pressure equipment such as construction machinery, automobile, aircraft, industrial machinery, machine tools and machinery for ships. Also, they are widely used as pipes in oil pressure circuit. When we estimate their lifetime, it is essential to conduct an accelerated life test by choosing the factor that suits the usage condition of the test object since traditional test method for estimating lifetime under the influence of various external factors incurs hardship in terms of time and expenses. The objective of this study is to propose an acceleration model that takes both temperature and pressure without flexing condition into consideration. The lifetime is estimated by applying the proposed temperature-nonthermal acceleration model to the test data. And we compare the proposed temperature-nonthermal acceleration model and the accelerated life equation suggested by John(1994).

Steady-State Current Characteristics for Squirrel Cage Induction Motor according to Design Variables of Rotor Bars using Time Difference Finite Element Analysis

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2017
  • Induction motors have wide applicability in many fields, both in industrial sectors and households, for their advantages of a high efficiency and robust structure. The introduction of power-source-containing harmonics into the induction motor winding lowers its efficiency and increases its temperature, greatly affecting its operation characteristics. In this study, we performed an electromagnetic field analysis using the time-difference finite-element method with the purpose of analyzing the steady-state current characteristics of an induction motor. Additionally, we calculated the steady-state current with a method combining an electromagnetic field equation and a circuit equation. In the electromagnetic field analysis, the nonlinearity was taken into account using the Newton-Raphson method, and a backward time-difference method was employed for the time derivative term. Then, we compared the steady-state current of the induction motor obtained by calculation with the experimentally measured values, thus validating the proposed algorithm. Furthermore, we analyzed the impacts of the shape and material of the rotor conductor bar of the induction motor on the steady-state current of the main winding.

A Wideband Clock Generator Design using Improved Automatic Frequency Calibration Circuit (개선된 자동 주파수 보정회로를 이용한 광대역 클록 발생기 설계)

  • Jeong, Sang-Hun;Yoo, Nam-Hee;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.451-454
    • /
    • 2011
  • In this paper, a wideband clock generator using novel Automatic frequency calibration(AFC) scheme is proposed. Wideband clock generator using AFC has the advantage of small VCO gain and wide frequency band. The conventional AFC compares whether the feedback frequency is faster or slower then the reference frequency. However, the proposed AFC can detect frequency difference between reference frequency with feedback frequency. So it can be reduced an operation time than conventional methods AFC. Conventional AFC goes to the initial code if the frequency step changed. This AFC, on the other hand, can a prior state code so it can approach a fast operation. In simulation results, the proposed clock generator is designed for DisplayPort using the CMOS ring-VCO. The VCO tuning range is 350MHz, and a VCO frequency is 270MHz. The lock time of clock generator is less then 3us at input reference frequency, 67.5MHz. The phase noise is -109dBC/Hz at 1MHz offset from the center frequency. and power consumption is 10.1mW at 1.8V supply and layout area is $0.384mm^2$.

A Study on the Design of D/A Converter based on Data Weighted Average Technique for enhancement of reliability (혼합형 전류 구동 D/A 컨버터 설계 제작에 있어서 데이터 가중평균기법을)

  • Kim, S.D.;Woo, Y.S.;Kim, D.G.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3215-3217
    • /
    • 1999
  • In this paper, a new structure of realizing switching control logic for Data Weighted Average Technique is suggested. It uses memory and adder for summing past binary input and this summed data is used to select one switch in control logic. This control logic acts in parallel regardless of resolution so increasing resolution don't affect on converting speed. In this reason, high speed and high resolution D/A converter based on Data Weighted Average Technique could be made. In this paper, 4 bits current mode thermometer code D/A converter is degined and simulated by using HSPICE. Simulated results show that new structure of D/A converter has more than 250MHz converting speed and less than 0.0003[LSB] INL error. It is very useful in low power circuit because of using 3.3 V supply voltage.

  • PDF

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator (의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어)

  • Yang, JeongHwan;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.