• Title/Summary/Keyword: Power Battery

Search Result 2,693, Processing Time 0.038 seconds

Improvement of Available Battery Capacity in Electric Vehicles

  • Liu, Yow-Chyi
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.497-506
    • /
    • 2013
  • This paper proposes a new method to improve the available battery capacity in electric vehicles by connecting lead-acid batteries with lithium-ion battery in parallel to supply power. In addition, this method combines the discharge characteristics of batteries to improve their efficiency and lower their cost for electric vehicles. A lithium-ion battery set is used to connect with N sets of lead-acid batteries in parallel. The lead-acid battery supplies the initial power. When the lead-acid battery is discharged by the load current until its output voltage drops to the cut-off voltage, the power management unit controls the lead-acid battery and changes it to discharge continuously with a small current. This discharge can be achieved by connecting the lead-acid battery to a lithium-ion battery in parallel to supply the load power or to discharge its current to another lead-acid or lithium-ion battery. Experimental results demonstrates that the available capacity can be improved by up to 30% of the rated capacity of the lead-acid batteries.

The Development of ZVZCS type Battery Charger for High Speed Trail Car with Ni-Cd Battery Charging Algorithm (Ni-Cd전지용 충전 알고리즘을 이용한 고속전철용 ZVZCS형 충전장치개발)

  • 김연준
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.548-551
    • /
    • 2000
  • The battery charger for high speed trail car is very important power source for the purpose of safty and system stability. it provides control power of VVVF, CVCF, DC/DC converter and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car and battery included power circuit of the ZVZCS type battery charger for high speed trail car and inverter for traction motor. This paper included power circuit of the ZVZCS type battery charger for high speed trail car an battery charging algorithm. Also the optimum parallel operation of 50Kw battery charger for high speed trail car and charging control method of Ni-Cd battery illustrates validity and effectiveness through the experiments.

  • PDF

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

Battery Sizing of Lithium-Based Battery for Emergency Power Supply in Nuclear Power Plants (전 비상전원 적용을 위한 리튬계열전지 용량 설계)

  • Park, Seongyun;Kim, Gunwoo;Lee, Pyeongyeon;Kim, Jonghoon;Park, Sungbeak;Kim, Youngmi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.342-348
    • /
    • 2019
  • The emergency power supplies (EPSs) are required to increase battery sizing for protecting power source loss above designed criteria. This study proposes a sizing method for lithium-based batteries for EPSs in nuclear power plants on the basis of the calculation method for the required energy under variable conditions. The variable conditions are related with the characteristics of lithium-based batteries, such as the temperature of the location of EPS installation, aging, and design margin. The usage of lithium-based battery reduces the cost and installation space and enables the safe and long-term supply of power compared with the use of lead-acid battery.

Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

  • Chang, Choong-koo;Sulley, Mumuni
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2561-2567
    • /
    • 2018
  • The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

Bidirectional Power Transmission Fuel Cell System for Notebook Battery (노트북 배터리용 양방향 전력전송 연료전지 시스템)

  • JOUNG, GYUBUM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2017
  • In this paper, a fuel cell battery charger system, which is capable of bi-directional power transmission without built in battery, has been designed and fabricated. Performance and states of the notebook battery in bi-directional power transmission using the manufactured system have been tested. Before initializing the fuel cell charging system for 1 minute, the system received 10 W of electric power from notebook battery. Then the fuel cell charging system has been normal charging to notebook battery by 50 W. As a result of the experiment, the state of the notebook battery discharged less than 5% at the initial charging time, but then it has been charged. This results proves bi-directional power transmission in notebook computers increase the availability of fuel cell chargers.

DTS-based Temperature Monitoring and Analysis of Battery Cell Deterioration Characteristics by Temperature Condition (DTS 기반 온도 감시 및 온도 조건에서의 배터리 셀 열화 특성 분석)

  • SoonJong, Kwon;Soo-Yeon, Kim;Jin, Hwang;Sang-Kyun, Woo;Bong-Suck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • As ESS safety issues increase recently, there is a need to more precisely monitor the temperature of the ESS. In this paper, DTS technology for temperature monitoring of ESS batteries is introduced and the temperature measurement principle is explained. The temperature of the battery module is measured using the DTS system, and the thermal deviation between battery cells inside the battery module is analyzed. In order to analyze how thermal imbalance affects the charging and discharging performance of the battery, an accelerated degradation test was conducted. Cycle life characteristics analysis, battery surface temperature change, and AC impedance characteristics were conducted to analyze how the performance of battery cells differs according to temperature conditions.

AuxiliaryPower Device of Spontaneous starting for Railway Vehicle when electric overdischarge or an impossibility of being supplied with control power (밧데리 방전 및 제어 전원 수전불가시 자생기동 가능한 전동차용 보조전원장치)

  • Jeong Soon-You;Kim Sang-Kyun;Lee Hyun-Seok;Lee Kyung-Bok
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.548-553
    • /
    • 2003
  • Battery supplies Each Electric device in Railway vehicles with Control Power. When Battery is overchargedjustly, the battery voltage is not satisfied with the minimum operating voltage, CVCF Inverter(SIV) is supplied with external Power supply or the other railway vehicles and start up CVCF Inverter. In this paper to improve this problem, Dead battery Starter system is proposed. When the battery voltage is not satisfied with the minimum value.turn on the Dead Battery Starter switch, and the Dead Battery Starter supplies the control power to the SIV controller from the line voltage. With this Dead Battery Starter system, the train can be operated when the battery is not proper status. Dead Battery Starter is designed by ROTEM and will be delivered to Attiko Metro Series 2.

  • PDF

Analysis of Battery Performance Test for DC Power System in Nuclear Power Plant (원자력발전소 직류전원계통용 축전지 성능시험 분석)

  • Kim, Daesik;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Function of battery bank stores energy for DC load in general, and DC power system of the nuclear power plant is used to supply DC loads for safety- featured instrumentation and control such as inverter, class 1E power system control and indication, and station annunciation. Class 1E DC power system must provide a power for the design basis accident conditions, and adequate capacity must be available during loss of AC power and subsequent safe shutdown of the plant. In present, batteries of Class 1E DC power system of the nuclear power plant uses lead-acid batteries. Class 1E batteries of nuclear power plants in Korea are summarized in terms of specification, such as capacity, discharge rate, bank configuration and discharge end voltage, etc. This paper summarizes standards of determining battery size for the nuclear power plant, and analyzes duty cycle for the class 1E DC power system of nuclear power plant. Then, battery cell size is calculated as 2613Ah according to the standard. In addition, this paper analyzes performance test results during past 13 years and shows performance degradation in the battery bank. Performance tests in 2001 and 2005 represent that entire battery cells do not reach the discharge-end voltage. Howeyer, the discharge-end voltage is reached in 14.7% of channel A (17 EA), 13.8% of channel B (16 EA), 5.2% of channel C (6 EA) and 16.4% of channel D (19 EA) at 2011 performance test. Based on the performance test results analysis and size calculation, battery capacity and degradation by age in Korearn nuclear power plant is discussed and would be used for new design.

LLC Resonant Converter design for Uninterruptible Power Supply Battery Discharger (LLC 공진형 컨버터를 이용한 무정전전원장치 Battery Discharger 설계)

  • Yoo, Kwang-Min;Kim, Seung-Joo;Kim, Kyoung-Dong;Park, Seung-Hee;Byeon, Yong-Seop;Lim, Seung-Beom;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.240-246
    • /
    • 2013
  • An Uninterruptible Power Supply(UPS) is a system designed to deliver energy during accidents that the AC mains is out of its acceptable limits, without interruption of power flow through the load. Battery Discharger is the device to supply high quality power to the Inverter, when accidents occur, such as Power Failure. The Battery Discharger should have a fast response characteristics. The LLC resonant converter for UPS battery discharger is proposed. The proposed Battery Discharger offers substantial improvements in efficiency, size and cost. The proposed Battery Discharger of UPS approach is a good solution for high power applications above KW. To verify the validity of proposed Battery Discharger, simulations and experiments are carried out.