• Title/Summary/Keyword: Power Assisted Wheelchair(PAW)

Search Result 2, Processing Time 0.014 seconds

A Control Method for Power-Assist Devices using a BLDC Motor for Manual Wheelchairs

  • Kim, Dong-Youn;Kim, Yong-Hyu;Kim, Kwang-Sik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.798-804
    • /
    • 2016
  • This paper proposes a new operation and control strategy for Power-Assisted Wheelchairs (PAW) using one brushless DC (BLDC) motor. The conventional electrical wheelchairs are too heavy and large for one person to move because they have two electric motor wheels. On the other hand, the proposed PAW system has a small volume and is easy to move due to the presence of a single wheel motor. Unlike the conventional electric wheelchairs, this structure for a PAW does not have a control joystick to reduce its weight and volume. To control the wheelchair without a joystick, a special control system and algorithm are needed for proper operation of the wheelchair. In the proposed PAW system uses only one sensor to detect the acceleration and direction of PAW's movement. By using this sensor, speed control can be achieved. With a speed control system, there are three kinds of operations that can be done on the speed of a PAW: the increment of PAW speed by summing external force, the decrement of PAW speed by subtracting external force, and emergency breaking by evaluating the time duration of external force. The validity of the proposed algorithm is verified through experimental results.

Assist Torque Balance Control for Power Assisted Wheelchair Based on Temporal Similarity between Input Torques (입력토크의 시간적 유사성에 기반한 파워 어시스트 휠체어의 토크 밸런스 제어)

  • Heo, Y.;Hong, E.P.;Ryu, J.C.;Moon, M.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2015
  • In order for a Power Assisted Wheelchair (PAW) to maintain a straight driving direction, the same force must be delivered to both wheels. However, a human has different strength between the right and left arms, and cannot control the force uniformly at all times. Therefore, appropriate assist torque shall be generated from unbalanced human torque inputs by detecting the user intention, in order to maintain direction uniformly in straight sections or change direction quickly in curved sections. In this study, a special function is proposed to detect the intention of drivers on the basis of temporal similarity between the input torque signals, and a torque balancing technique based on this function is proposed. In the experiments, the effectiveness of the proposed torque balancing method are verified.

  • PDF