• Title/Summary/Keyword: Powdered activated carbon

Search Result 89, Processing Time 0.024 seconds

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Adsorption Characteristic of Brownish Dark Colored Compounds from the Hot Water Extract of Auricularia auricula Fruit Body (흑목이 버섯 자실체의 열수추출물로부터 흑갈색 색소 성분의 흡착 특성)

  • Kim, Hyeon-Min;Hur, Won;Lim, Kun Bin;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.138-146
    • /
    • 2009
  • The crude polysaccharide fraction from fruit body of Auricularia auricula were obtained by using hot water extraction and ethanol precipitation. As the crude polysaccharide fraction contained the brownish dark colored compounds, the adsorption study of pigments from the crude polysaccharide using activated carbon was carried out. The pigment compounds showed an absorption characteristic with $\lambda_{max}$ of 230 nm and the absorbance at 230 nm was taken as color intensity. Adsorption capacity of pigment depended on increase of the activated carbon to sample loading ratio. The adsorption capacity increased with increase of pH and temperature in the pH range of 3.0-7.0 and temperature range of 25-40$^{\circ}C$, but decreased in the temperature range of 40-70$^{\circ}C$. The optimum capacity was obtained at addition of 16.7 mg activated carbon per mL sample solution (concentration = 3 mg/mL) at pH of 7.0 and temperature of 40$^{\circ}C$. Treatment for 10 min was sufficient to achieve the 80% decolorization and 1.25 fold purification of polysaccharide. Langmuir isotherm and pseudo second-order kinetic model provided the best fitting for adsorption of the brownish dark colored compounds onto powdered active carbon. The activation energies of adsorption from the Langmuir isotherm parameter in the ranges of 25-40$^{\circ}C$ and 40-70$^{\circ}C$ was -2.54 and 4.38 kcal/g, respectively. The results of low activation energy also indicated that the adsorption process was a physical adsorption which was controlled by diffnsion.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.

A Study for Recoverability of Iron Resource in Red Mud (레드머드 내 철 자원 회수 가능성 고찰)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.297-306
    • /
    • 2020
  • The red mud generated from bauxite during the Bayer alumina production process has been regarded as an industrial waste due to the high alkaline property and high content of Na. Despite of its environmental problem, various studies for recovery of the valuable resources from red mud has been also carried out because of high content (25.7 wt.% as Fe2O3 in this study) of iron in red mud. In order to recover the iron resource in the red mud, microwave heating experiments were performed with adding of activated carbon and elemental sulfur to the red mud. Through the microwave heating the powdered red mud mixtures converted to porous and vitrified solid aggregates. The vitrified aggregates produced by microwave heating are composed of goethite, zero valent iron (Fe0), pyrrhotite and pyrite. And then, the microwave heating samples were dissolved in the aqua regia solution, and Fe precipitates were obtained as a Fe-chlorides by adding of NaCl salt in the aqua regia solution. The Fe recovery rates in the Fe-chloride precipitates showed differences depending on the experimental mixture conditions, and Fe grades of the end products are 49.0 wt.%, 58.0 wt.% and 59.5 wt.% under mixture conditions of red mud, red mud + activated carbon, and red mud + activated carbon + elemental S, respectively. The Fe content of 56.0 wt.% is generally known as the grade value of Fe in a iron ore for iron production, and the Fe grades of microwave heating samples with adding activated carbon and elemental S in this study are higher than the grade value of 56.0 wt.%.

A Study on Gas-Liquid Interfacial Areas with the Stirrer Spends for A$CO_2$bsorption in Agitated Vessel (평면 교반조에서의 $CO_2$ 기체흡수에서 교반속도에 따른 기-액 계면 면적에 관한 연구)

  • 박문기;문영수
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.403-408
    • /
    • 1994
  • Catalytic slurry reactors, in which a solid maintained in the rom of fine particles suspended in a liquid, are frequently used in chemical and biochemical and industries. In these processes the particle loading is normally low so that the effects of particles on the liquid-film mass transfer coefacent and the gas-liquid interface area are assumed to be negligible. But it is known from the works, amongst others, that the finely powdered activated carbon can increase the gas-liquid mass transfer significantly in surface-aerated reactors. The stirred cell (13.2cm inside diameter) contained four baffles and at the stirring speeds range of 80 ∼ 300ppm, the gas-liquid interfacial area could be considered as that of the cross section of the vessel (that is, 130.1cm2). When the stirrer speeds were increased, the effective interfacial area was slightly higher than the geometric area and was obtained experimentally from the Danckwerts plots. Key Words : gas-liquid interfacial area, Duckwert's Plot stirred dell. mass transfer coefficient.

  • PDF

A Basic Study for Tasted and Odors Treatment and Optimum Chemical Feed in Existing Water Treatment Processes (기존 정수처리공정에서 이취미처리 및 최적 약품투입을 위한 기초연구)

  • Lim, Bong-Su;Bae, Byung-Uk;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.94-102
    • /
    • 1996
  • This study was accomplished to get the basic data for the optimum chemical feed, evaluating interference between tastes and odors chemicals and coagulants in existing water treatment processes. During the tastes and odors occurs at D intaking tower area in 1995, PAC(Powdered Activated Carbon) feed with coagulants was PAC feed only and with coagulant simultaneously were appeared TON removal efficiency about 84%-87% within 20 min reaction time, but feed with time intervals was about 98% TON removal efficiency. Therefore in the case of PAC feed with coagulant, it is effective to feed coagulant on some time intervals in removing tastes and odors. It is not effective to feed PAC with chlorine dioxide($ClO_2$) or chlorine simultaneously in removing tastes and odors, because these chemicals were reduced the adsorption capacity of PAC.

  • PDF

PAC Pretreatment for Ultrafiltration of RBC Effluent (PAC-한외여과막을 이용한 회전원판 처리수의 고도처리)

  • Ahn, Kyu-Hong;Song, Kyung-Guen;Park, Joon-Hong;Kweon, Ji-Hyang;Kim, Hyung-Soo;Kwak, Jong-Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.70-79
    • /
    • 1996
  • Ultrafiltration(UF) and powdered activated carbon(PAC) adsorption were combined to treat wastewater contaminated with refractory organic compounds. Secondary sewage effluent of RBC process was used for the investigation. It was determined from batch test results that a contact time of 2 hours and a PAC dose of 450mg/l would be used in the experiments. Backwashing was accomplished by forcing the permeates back ward with pressure of $2.5kgf/m^2$ for 90 seconds. It was shown that refractory organics removal by the PAC-UF process was more efficient than UF process without PAC pretreatments. As backwashing frequency was decreased from four times to one time in an hour, the removal efficiency was significantly increased. The addition of PAC to the UF process mitigated the fluctuation of filtrate quality which was increased in UF process without PAC treatment as transmembrane pressure was increased.

  • PDF

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

Adsorption-DAF Hybrid Process for the Simultaneous Removal of Algae and Organic Compounds (조류와 유기화합물의 동시제거를 위한 흡착 - DAF 복합공정)

  • Lee, Jae-Wook;Kwak, Dong-Heui;Choi, Seung-Phil;Jung, Heung-Joe
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 2004
  • Dissolved air flotation (DAF) is an effective solid/liquid separation process for low density floc particles such as algal, color-alum and clay-alum flocs produced from low turbidity water. The removal of taste and odor-causing organics (2-mthylisoboneol and geosmin) originating from algae in drinking water is a local and worldwide concern. Although DAF has been effectively applied for the removal of suspended solid, its application for the treatment of dissolved organic carbon is very limited. In this study, a new hybrid system consisting of adsorption and DAF processes was introduced for the simultaneous removal of algae and taste and odor-causing organics. Powdered activated carbon (PAC) was used as an adsorbent. In this proposed system, the major concern of eliminating the spent PAC from the system was also addressed. It was found that zeta potential of algae and PAC was increased with coagulant dosage, and the removal efficiency in DAF was also enhanced up to 90~95% under the given experimental conditions. Based on this study, the hybrid process was found to be a promising technology for the simultaneous removal of algae and dissolved organic pollutants.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.