• Title/Summary/Keyword: Powdered activated carbon(PAC)

Search Result 61, Processing Time 0.023 seconds

An experimental study on the filtration test of cotton ball filters (코튼볼 여재의 여과 특성 실험 연구)

  • Kim, Sunghong;Kim, Heejun;Kim, Donghan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • In order to measure the filtration characteristics of a cotton ball shape filter, the experiments of suspended solids(SS) surrogate material selection and filtration performance have been carried out in this study. Between the two materials of powdered activated carbon(PAC) and powdered red-clay, PAC is more suitable surrogate material in terms of experimental criteria and particle size distribution in the non-point source pollutants removal system. As a result of the filtration experiments with the cotton ball shape filter, the initial headloss was about 8 cm, and the headloss slightly increased over filtration time. The Kozeny-Carman equation was used to analyze the changes of pressure and porosity during the filtration. The initial porosity was calculated as 0.945 and it decreased to 0.936 at the end of design filtration time. As the filtration continued, the SS concentration of the filtered water gradually increased and the SS removal rate gradually decreased. When the SS target removal efficiency is assumed to be 80%, the cumulative SS removal capacity is expected as $28.8kg/m^2$. This means the volume loading rate of the cotton ball shape filter can be $115m^3/m^2$ when the typical SS concentration of non-point source water pollution is assumed as 250 mg/L.

A Study on Removal of Natural Organic Matter (NOM) and Application of Advanced Water Treatment Processes for Controlling Disinfection By-Products (소독부산물 제어를 위한 자연유기물(NOM) 제거와 고도정수처리공정 적용에 관한 연구)

  • Kim, Hyun Gu;Eom, Han Ki;Lee, Dong Ho;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.563-568
    • /
    • 2015
  • Natural Organic Matter (NOM) is a precursor of disinfection by products. Recently, with the increase in NOM concentration caused by a large amount of algae, the creation of disinfection by-products is becoming a big issue. Therefore, in this study, PAC+Membrane+F/A hybrid process was organized to control disinfection by-products in small-scale water treatment plants. The optimal dosage of PAC was set at 20 mg/L through Lab. scale test. Also, it is judged that NOM concentration must be less than 1.0 mg/L to meet the recommended criteria of drinking water quality monitoring items of disinfection by-products during chlorination. The existing conventional water treatment process was compared to the independent F/A process and the PAC+Membrane+F/A hybrid process through pilot plant operation, and the result showed that there is a need to apply an advanced water treatment process to remove not only NOMs but also Geosmin caused by algae. Accordingly, it is considered that applying the PAC+Membrane+F/A process will help in controling a clogged filter caused by a large amount of algae and disinfection by-products created by chlorination and can be used as an advanced water treatment process to meet the recommended criteria of drinking water quality monitoring items.

Treatment of Leachate from Municipal Landfill and Industrial Landfill by PAC Adsorption-Coagulation (분말활성탄 접촉-응집에 의한 생활폐기물 및 산업폐기물 매립지 침출수의 처리)

  • Kim, SooYoung;Chang, Duk;Kim, Young Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.110-117
    • /
    • 1997
  • Performances of combined adsorption and coagulation were evaluated as one of the options for pre-treatment or post-treatment of MSW landfills leachate and industrial landfill leachate. The COD and color removals of leachate from an old MSW landfill were 35% and 33% at an alum dose of 300mg/L with preceding PAC(powdered activated carbon) dose of 200mg/L, respectively. The COD and color removals of leachate from an young MSW landfill were 58% and 25% at an alum dose of 700mg/L and PAC dose of 500mg/L, respectively. The COD and color of biologically treated leachate from an industrial waste landfill were removed up to 32% and 68%, respectively, with pH control at addition of 500mgAlum/L and 1,000mgPAC/L. Adsorption and coagulation process with pH control showed better COD and color removals than the process without pH control for biologically treated leachate from an industrial waste landfill. The color removal was influenced greatly by pH control, while COD removal was not significant. No difference in removal efficiency was observed between adsorption-coagulation and coagulation-adsorption process. The COD removal was accomplished mainly by adsorption, while coagulation was a key mechanism of color removal. However, the mechanism of COD removal was obscure, when BOD/COD ratio was high. Maximum net increases in COD and color removals by the adsorption-coagulation process were respectively 45% and 46% compared with the unit process of adsorption or coagulation, although those removals depended on leachate characteristics. Thus, adsorption-coagulation process was considered to be effective for pre- and post-treatment of landfill leachate, and has distinct features of simple, flexible, stable and reliable operation against fluctuation leachate quality and flowrate.

  • PDF

Study on Removal of Cesium in Water Treatment System (물속의 방사성핵종(세슘) 제거율 연구)

  • Jeong, Gwanjo;Son, Boyoung;Ahn, Chihwa;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the removal of a radioactive cesium ($Cs^+$) in the water at the water treatment processes. Since cesium is mostly present as the $Cs^+$ ion state in water, it is not removed by sand filtration, and coagulation with polyaluminum chloride (PACl), powdered activated carbon (PAC) and mixture of PACl and PAC. However, it is known that the removal rate of cesium increases as the turbidity increases in raw water. As the turbidity was adjusted by 74 NTU and 103 NTU using the surrounding solids near G-water intake and yellow soils, removal rate of cesium was about 56% and 51%, respectively. In case of a GAC filtration with supernatants after jar-mixing/setting was conducted, 80% of cesium is approximately eliminated. The experimental results show that it is efficient to get rid of cesium when the turbidity of the raw water is more than 80 NTU. In case of a GAC filtration, about 60% of cesium is removed and it is considered by the effect of adsorption. Cesium is not eliminated by microfiltration membrane while about 75% of cesium is removed by reverse osmosis.

A study on the Removal of Heavy Metals from Industrial Wastewater by Treatment with Discarded Automotive Tires (폐 타이어에 의한 고장폐수 내의 중금속 제거에 관한 연구)

  • Choung, Youn Kyoo;Min, Dal Ki;Oh, Hyun Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.29-42
    • /
    • 1986
  • This study is an experimental research on the adsorption capacity and the adsorption system utilizing Discarded Automotive Tires(DAT) and Powdered or Granular Activated Carbon(PAC or GAC) for the removal of heavy metals, Ag(I), Cd(II), Cu(II), Zn(II). Batch shaking test was conducted to determine the adsorption capacity of DA T and PAC in removing the heavy metals from aqueous wastes; and laboratory-scale column experiment was performed to present design factors affecting the optimum design of adsorption column with DAT and GAC, through the concept of Bed Deph/Service Time(BDST). As results, DAT has been proven to be a good adsorbent will its adsorption capacity not falling behind PAC or GAC. Factors affecting heavy metals removals were amount of adsorbents, initial concentrations, pH and so on. BDST equations were compared with values presented by the breakthrough data from adsorption system.

  • PDF

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Development of a New Advanced Water Treatment Process (PMR) and Assessment of Its Treatment Efficiency (고도정수처리 신(新) 공정(PMR)개발 및 처리효율 평가)

  • Ahn, Hyo-Won;Noh, Soo-Hong;Kwon, Oh-Sung;Park, Yong-Hyo;Wang, Chang-Keun
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • Removal of organic substances and taste/odor control are ones of the main issues in water supply, resulting in introduction of advanced processes such as ozon/GAC, or PAC. However, raw water quality deteriorates, new pollutants advent, so water quality is not acceptable enough even with those existing advanced processes. In this paper, a new advanced water treatment process using PAC slurry blanket, where PAC particles stay in the basin as slurry blanket, coupled with submerged membranes is introduced. A pilot plant $(80m^3/day)$ was installed to assess the performance of this new process using actual raw water, and DOC was removed higher than 90% in the beginning and $70{\sim}80%$ afterwards, while 2-MIB and geosmin were removed completely. This new process still requires future study on process optimization and long-term assessment, however it seems highly possible to countermeasure as a new advanced process with high removal efficiency.

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.