• 제목/요약/키워드: Powder pressing

검색결과 390건 처리시간 0.026초

금속 몰드를 이용한 금속 분말의 온간 등가압 성형 (Densification Behavior of Metal Powder Under Warm Isostatic Pressing with a Metal Mold)

  • 박중구;김기태
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.838-847
    • /
    • 2004
  • The effect of a metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with a metal mold. We use lead as a metal mold and obtain experimental data of metal mold properties. To simulate densification behavior of metal powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with a metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

온간 성형 하에서 A1 합금 분말의 정밀정형에 대한 유한요소해석 (A Finite Element Analysis for Near-net-shape Forming of A16061 Powder under Warm Pressing)

  • 김종광;양훈철;김기태
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1897-1906
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of A16061 powder was performed under warm rubber isostatic pressing and warm die pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain a part with better density distributions. The shape of rubber mold was designed by determining a cavity shape that provides a desired shape of the final powder compact. To simulate densification and deformed shape of a powder compact during pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy Potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm die pressing and warm isostatic pressing.

금속 몰드를 이용한 금속 분말의 온간 등가압 성형 (Densification behavior of metal powder under warm isostaic pessing with metal mold)

  • 박중구;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

혼합 금속 분말의 고온 치밀화 거동 (Densification Behavior of Mixed Metal Powders under High Temperature)

  • 조진호;김기태
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.735-742
    • /
    • 2000
  • Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.

고온 금형압축시 티타늄 합금 분말의 치밀화 거동 (Densification Behavior of Titanium Alloy Powder Under Hot Pressing)

  • 양훈철;김기태
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3061-3071
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot pressing at various pressures and temperatures. Experimental date were obtained for densification of titanium alloy powder under an instantaneous loading and subsequent creep deformation during hot pressing. The constitutive models of Fleck et al. and the modified Gurson were employed for thermo-phastic deformation under the instantaneous loading and that f Abouaf and co-workers for creep deformation of titanium alloy powder during hot pressing. By implementing these constitutive equations into a finite element program(ABAQUS), finite element results were compared with experimental data during hot pressing. To investigate the effect of friction between the power and die wall, density distributions of power compacts were measured and compared with finite element calculations. Finite element results from the models of Fleck et al. and the modified Gurson agreed reasonably good with experimental data for densification and density distribution of titanium alloy powder under the instantaneous loading during hot pressing. Finite element results from the model of Abouaf and co-workers, however, somewhat overestimate experimental data for creep deformation of power compacts during hot pressing.

냉간 정수압 성형시 금속분말과 맨드렐 사이의 마찰이 분말의 치밀화에 미치는 영향 (Effect of friction between metal powder and a mandrel on densification during cold isostatic pressing)

  • 이희태;김기태
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1116-1126
    • /
    • 1997
  • The effects of friction between powder and a mandrel on densification behavior of metal powder were investigated under cold isostatic pressing. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into finite element program (ABAQUS) to simulate compaction responses of metal powders during cold isostatic pressing. The friction coefficients between powder and mandrels with different roughness were determined by comparing experimental data and finite element results. Density distributions in the powder compacts were also studied for different friction coefficients. Finite element results were compared with experimental data for pure iron powder under cold isostatic pressing.

금속 분말의 고무 등가압 성형과 냉간 정수압 성형 (Rubber Isostatic Pressing and Cold Isostatic Pressing of Metal Powder)

  • 김종광;양훈철;김기태
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1076-1086
    • /
    • 2003
  • The effect of a rubber mould on densification behavior of aluminum alloy powder was investigated under cold isostatic compaction. A thickness of rubber mould and friction effect between die wall and rubber mould were also studied. The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze deformation of rubber. The elastoplastic constitutive equation of Shima and Oyane and that of Lee on densification were implemented into a finite element program (ABAQUS) to simulate densification of metal powder for cold isostatic pressing and rubber isostatic pressing. Finite element results were compared with experimental data for densification and deformation of aluminum alloy powder under isostatic compaction.

온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석 (A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing)

  • 김기태;양훈철;김종광
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

냉간 조합압축과 상압소결에 의한 세라믹 분말의 정밀정형과 유한요소해석 (Near-Net-Shape Forming and Finite Element Analysis for Ceramic Powder Under Cold Combination Pressing and Pressureless Sintering)

  • 김홍기;이형만;김기태
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.526-534
    • /
    • 2000
  • Near-net-shape forming of zirconia powder was investigated under the combination of cold die and isostatic pressing and pressureless sintering. A novel combination pressing technique, i.e., die com paction under cold isostatic pressing, allowed to produce a complex shaped ceramic powder compact with the controlled dimensions and relatively uniform density distributions. The constitutive models proposed by Kim and co-workers for densification of ceramic powder under cold compaction and high temperature were implemented into a finite element program (ABAQUS). Experimental data for relative density distributions and deformations of zirconia powder compacts produced by cold combination pressing and pressureless sintering were compared with finite element results. Finite element results agreed well with experimental data.

온간금형 압축시 구리 분말의 치밀화에 대한 알루미늄 몰드의 영향 (The Effect of an Aluminum Mold on Densification of Copper Powder Under Warm Pressing)

  • 이성철;박태욱;김기태
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.333-339
    • /
    • 2008
  • Densification behavior of copper powder was investigated to study the effect of an aluminum mold under warm pressing. The low flow stress of an aluminum mold is appropriate to apply hydrostatic stress to powder compacts during compaction under high temperature. The suggested powder metallurgy process is very useful under high temperature since copper powder compacts have higher relative density over axial stress of 100 MPa and show more homogeneity as compared with conventional warm pressing. Elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) for densification behavior under warn pressing by using a metal mold. Finite element results agreed well with experimental data for densification and deformation of copper powder compacts in the mold.